中温排熱を高効率蓄熱可能な潜熱蓄熱材(h-MEPCM)を流動化~高速蓄熱・放熱時の熱挙動と粒子状態を解明~

2026-02-12 東京農工大学

東京農工大学と北海道大学の研究チームは、スズを内包したα-アルミナ被覆マイクロカプセル型潜熱蓄熱材(Sn@α-Al2O3, h-MEPCM)を100~300℃の中温域で流動化し、高速な蓄熱・放熱挙動と粒子状態を実証した(Energy & Fuels)。従来の固定層に比べ、流動層化により熱移動を大幅に高速化し、約40時間の運転でも安定な性能を確認。中温排熱の高効率回収を可能にし、発電所の需給変動緩和や産業排熱の有効利用拡大に貢献が期待される。

中温排熱を高効率蓄熱可能な潜熱蓄熱材(h-MEPCM)を流動化~高速蓄熱・放熱時の熱挙動と粒子状態を解明~
図1:流動層実験装置図

<関連情報>

流動床におけるSn@α-Al 2O3マイクロカプセル化相変化材料(MEPCM)の熱的および物理的特性 Thermal and Physical Properties of Sn@α-Al2O3 Microencapsulated Phase Change Material (MEPCM) in a Fluidized Bed

Masahiro I. Aoki,Takuto Aoki,Naoya Shirota,Tomokazu Nakamura,Melbert Jeem,Takahiro Nomura,and Chihiro Fushimi
Energy & Fuels  Published: December 4, 2025
DOI:https://doi.org/10.1021/acs.energyfuels.5c03913

Abstract

This study investigates the heat storage and release, and durability characteristics of microencapsulated phase change material (MEPCM) particles (average size: 31 μm) comprising an Sn core and α-Al2O3 shell (Sn@α-Al2O3) in a fluidized bed (i.d.: 29.8 mm, bed height: 90 mm). The MEPCM is designed to store latent heat at approximately 239 °C, targeting medium-to-high temperature waste heat recovery. Heat charge and discharge experiments were conducted by fluidizing the particle bed by varying the gas velocity to two times higher than the minimum fluidization velocity (umf) and measuring the axial temperature profile. The results showed rapid and uniform heat transfer during both the charging and discharging processes without observable temperature stratification in the bed when the gas velocity was 1.5 times or higher than umf. Particle durability was evaluated under high-temperature fluidization above 300 °C for 40 h. Elemental mapping indicated partial shell degradation and Sn oxidation after prolonged operation. However, differential scanning calorimetry (DSC) analysis confirmed that the latent heat capacity was retained even after 30 h of fluidization. These findings suggest that Sn@α-Al2O3 MEPCM particles can be applied to medium-temperature thermal energy storage (approximately 100–300 °C) in fluidized beds, offering both rapid thermal response and acceptable durability for waste heat recovery applications.

0105熱工学
ad
ad
Follow
ad
タイトルとURLをコピーしました