「逆向き」分子設計で新素材や医薬品の発見を加速(Scientists Design Molecules “Backward” to Speed up Discovery)

2026-01-21 ニューヨーク大学(NYU)

米国のニューヨーク大学(NYU)の研究チームは、分子を「逆向き」に設計する新しい計算手法を開発し、材料や薬剤探索を大幅に高速化できる可能性を示した。従来は、候補分子を作成してから性質を評価する「順方向」の手法が主流だったが、本研究では目標とする物性や機能から出発し、それを満たす分子構造を逆算的に導く。このアプローチにより、探索空間を効率的に絞り込み、試行錯誤の回数を大幅に削減できる。研究では、機械学習と物理モデルを組み合わせ、化学的に実現可能な分子のみを生成できることを示した。この成果は、新材料開発や創薬の迅速化につながるとして期待されている。


A new AI model designs molecules with specified properties 10 times faster than previous methods, potentially speeding up the process for the creation of pharmaceuticals and materials. The figure illustrates how the system transforms random noise into complete molecular structures guided by target properties. Image courtesy of the University of Florida and New York University

<関連情報>

PropMolFlow: ジオメトリ完全なフローマッチングによる特性誘導分子生成 PropMolFlow: property-guided molecule generation with geometry-complete flow matching

Cheng Zeng,Jirui Jin,Connor Ambrose,George Karypis,Mark Transtrum,Ellad B. Tadmor,Richard G. Hennig,Adrian Roitberg,Stefano Martiniani & Mingjie Liu
Nature Computational Science  Published:21 January 2026
DOI:https://doi.org/10.1038/s43588-025-00946-y

A preprint version of the article is available at arXiv.

Abstract

Molecule generation is advancing rapidly in chemical discovery and drug design. Flow-matching methods have recently set the state of the art (SOTA) in unconditional molecule generation, surpassing score-based diffusion models. However, diffusion models still lead in property-guided generation. In this work, we introduce PropMolFlow, an approach for property-guided molecule generation based on geometry-complete SE(3)-equivariant flow matching. Integrating five different property embedding methods with a Gaussian expansion of scalar properties, PropMolFlow achieves competitive performance against previous SOTA diffusion models in conditional molecule generation while maintaining high structural stability and validity. Additionally, it enables higher sampling speed with fewer time steps compared with baseline models. We highlight the importance of validating the properties of generated molecules through density functional theory calculations. Furthermore, we introduce a task to assess the model’s ability to propose molecules with under-represented property values, assessing its capacity for out-of-distribution generalization.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました