AIで化学研究を加速する新たな「レシピ」を開発(New ‘recipes’ for accelerating chemistry discoveries — with a dash of AI)

2026-01-19 イェール大学

米国のイェール大学の研究者は、AI(人工知能)を活用して化学研究の発見速度を大幅に高める新たな手法を提案した。従来、化学反応の設計や新物質探索は研究者の経験や試行錯誤に大きく依存していたが、本研究ではAIモデルを用いて既存データから反応条件や分子設計の「レシピ」を学習させ、最適解を効率的に導き出す。これにより、実験回数や時間を削減しながら、従来見逃されがちだった有望な反応経路や材料候補を発見できる可能性が示された。研究者は、AIが化学者の創造性を置き換えるのではなく、発想を拡張し、探索空間を加速的に広げる補助ツールになると強調している。このアプローチは、新薬開発、材料科学、エネルギー関連化学など幅広い分野への応用が期待され、化学研究の進め方そのものを変える可能性を持つ。

<関連情報>

AI支援化学合成のための集合知 Collective intelligence for AI-assisted chemical synthesis

Haote Li,Sumon Sarkar,Wenxin Lu,Patrick O. Loftus,Tianyin Qiu,Yu Shee,Abbigayle E. Cuomo,John-Paul Webster,H. Ray Kelly,Vidhyadhar Manee,Sanil Sreekumar,Frederic G. Buono,Robert H. Crabtree,Timothy R. Newhouse & Victor S. Batista
Nature  Published:19 January 2026
DOI:https://doi.org/10.1038/s41586-026-10131-4 An unedited version of this manuscript 

Abstract

The exponential growth of scientific literature presents an increasingly acute challenge across disciplines. Hundreds of thousands of new chemical reactions are reported annually, yet translating them into actionable experiments becomes an obstacle1,2. Recent applications of large language models (LLMs) have shown promise3,4,5,6, but systems that reliably work for diverse transformations across de novo compounds have remained elusive. Here we introduce MOSAIC (Multiple Optimized Specialists for AI-assisted Chemical Prediction), a computational framework that enables chemists to harness the collective knowledge of millions of reaction protocols. MOSAIC is built upon the Llama-3.1-8B-instruct architecture7, training 2,498 specialized chemical experts within Voronoi-clustered spaces. This approach delivers reproducible and executable experimental protocols with confidence metrics for complex syntheses. With an overall 71% success rate, experimental validation demonstrates the realizations of over 35 novel compounds, spanning pharmaceuticals, materials, agrochemicals, and cosmetics. Notably, MOSAIC also enables the discovery of new reaction methodologies that are absent from the expert’s training, a cornerstone for advancing chemical synthesis. This scalable paradigm of partitioning vast domains into searchable expert regions enables a generalizable strategy for AI-assisted discovery wherever accelerating information growth outpaces efficient knowledge access and application.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました