自己修復型複合材料:航空機・宇宙機構造を数世紀耐用可能に(Self-Healing Composite Can Make Airplane, Automobile and Spacecraft Components Last for Centuries)

2026-01-14 ノースカロライナ州立大学(NC State)

米国ノースカロライナ州立大学(NC State University)の研究チームは、自己修復型複合材料を開発し、航空機・自動車・宇宙機の構造部材の耐久性を大幅に向上させる可能性を示した。この材料は、ガラスや炭素繊維を強化材とする従来の高強度複合材料に、3Dプリントした熱可塑性修復剤パターンと、電流を流すと加熱される薄い炭素系ヒーター層を組み込んだ構造を持つ。損傷が生じると、加熱により修復剤が溶融し微細なひび割れや層間剥離に流れ込んで再結合することで、材料性能を回復する仕組みだ。この試作材料は1,000回以上の破壊・修復サイクルに耐え、従来の複合材料よりも耐層間剥離性が2〜4倍に向上することが確認された。この技術は、メンテナンスや交換に伴うコスト・廃棄物削減に寄与すると期待される。

自己修復型複合材料:航空機・宇宙機構造を数世紀耐用可能に(Self-Healing Composite Can Make Airplane, Automobile and Spacecraft Components Last for Centuries)
3D printed thermoplastic healing agent (blue overlay) on glass-fiber reinforcement (left); infrared thermograph during in situ self-healing of a fractured fiber-composite (middle); 3D printed healing agent (blue) on carbon-fiber reinforcement (right). Image credit: Jason Patrick, NC State University.

<関連情報>

長期にわたる自己修復:現場自動化により、構造複合材における世紀規模の破壊回復を実現 Self-healing for the long haul: In situ automation delivers century-scale fracture recovery in structural composites

Jack S. Turicek, Zachary J. Phillips, Kalyana B. Nakshatrala, and Jason F. Patrick
Proceedings of the National Academy of Sciences  Published:January 9, 2026
DOI:https://doi.org/10.1073/pnas.2523447123

Significance

Delamination damage has long hindered the safety and lifetime of fiber-reinforced polymer composites. This failure mode not only undermines their lightweight mechanical advantage but also amplifies the cost and environmental impact of these modern structural materials, which are inherently challenging to repair/recycle. Here, we innovate self-healing by automating in situ thermal remending to achieve 1,000 delamination heal cycles, an order-of-magnitude greater than prior studies. The life extension unlocks new science where diminishing interfacial chemical reactions and fiber debris accumulation contribute to a gradual, asymptotic decline in fracture recovery that follows a Weibull distribution. Our findings show this self-healing strategy for interlaminar fracture is repeatable on a scale far exceeding typical composite design lifetimes, thus shedding delamination from structural concern.

Abstract

Nature’s structural composites, such as bone and wood, achieve mechanical performance through hierarchical multimaterial design. Though, their real vantage lies in the exceptional ability to repeatedly heal after damage. Synthetic fiber-reinforced polymer (FRP) composites also leverage material hierarchy via fibrous reinforcement encapsulated within a polymer matrix, maximizing stiffness and strength. However, the layered architecture of laminated FRP composites makes them vulnerable to interlaminar delamination—debonding of fibers from the matrix—which significantly compromises structural integrity. Recently, we introduced a self-healing strategy via in situ heating, where soft yet tough thermoplastic inclusions achieve interlaminar fracture recovery via polymer chain re-entanglement, i.e., thermal remending. Here, in our latest embodiment, by automating in situ thermo-mechanical experiments, we achieve an order-of-magnitude enhancement in self-healing repeatability—reaching an unprecedented 1,000 cycles. Healing begins at 175% and slowly declines to 60% of the mode-I fracture resistance of a plain (nonhealing) composite, revealing unique chemo-physical mechanisms that govern this behavior. Both fiber-debris accumulation in the molten poly(ethylene-co-methacrylic acid) (EMAA) healing agent, and waning interfacial chemical reactions between the EMAA and epoxy matrix, contribute. A Weibull distribution capturing this complex fracture recovery predicts an asymptotic healing limit above 40%, suggesting sustained repair is possible. Translating these newfound thermal remending results into real-world context, a modest quarterly self-healing schedule could maintain interlaminar fracture repair of FRP composites for over 125 y—well beyond the typical design life of many modern structures including aircraft and wind turbines. Thus, this latest self-healing paradigm effectively eliminates delamination as a failure mode.

0705金属加工
ad
ad
Follow
ad
タイトルとURLをコピーしました