植物ウイルスゲノム解析ツールの精度を比較評価(Evaluating the evaluators: How do plant virus genome analysis tools stack up?)

2025-12-15 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の研究チームは、植物ウイルスのゲノム解析ツールの性能を体系的に評価し、ツール選択や解析精度向上に関する指針を示した。植物ウイルスは農作物に大きな被害を与えるため、迅速かつ正確なゲノム解析が防疫・育種・治療戦略に不可欠である。しかし、現在利用されている複数の解析ツール(アセンブリ、アノテーション、系統解析など)はそれぞれ性能や強みが異なり、研究者間での選択基準が不明瞭だった。研究チームは、代表的な解析ツールを多数の既知ゲノムデータセットで比較評価し、再現性、正確性、計算効率、誤検出率などの観点からツール性能を定量化した。その結果、ツールごとの得意・不得意領域や、ウイルス種・配列複雑性に応じた最適な組み合わせが明らかになり、解析ワークフロー設計での具体的な推奨が示された。これにより植物ウイルス研究、農業防疫、およびゲノム解析手法全般の信頼性と効率が向上することが期待される。

<関連情報>

欠陥はあるが有望:RNA-Seqデータにおける欠陥ウイルスゲノムの検出に現在利用可能なバイオインフォマティクスパイプラインの有用性を評価する Defective but promising: evaluating the utility of currently available bioinformatic pipelines for detecting defective viral genomes in RNA-Seq data

Anthony Taylor, Cristina Rosa and Marco Archetti

Journal of General Virology  Published: 17 November 2025

DOI:https://doi.org/10.1099/jgv.0.002176

植物ウイルスゲノム解析ツールの精度を比較評価(Evaluating the evaluators: How do plant virus genome analysis tools stack up?)

ABSTRACT

Defective viral genomes (DVGs) affect viral dynamics, pathogenicity and evolution, have been found in many in vivo viral infections, and in theory can be detected from sequencing data. We explored the utility of the currently available bioinformatic programs ViReMa, DI-tector, DVGfinder, DG-Seq and VODKA2 for identifying junction points in plant virus high-throughput sequencing data, looking at whether the outputs from these bioinformatic tools generally agree and exploring the possibility of using these tools to help us understand whether DVGs are consistently generated and maintained in a specific virus-host combination. We conducted a meta-analysis of eight previously published RNA sequencing datasets utilizing all five programs and compared the degree of output overlap, the most common junctions present in each output and whether these junctions match previously reported junctions for that virus. Our results demonstrate a low degree of agreement regarding identified junctions between programs, including the most frequently identified one, although the most frequently identified junctions typically corresponded to large, disruptive deletions. We found preliminary support for our prevalence hypothesis, although we ultimately conclude that a more robust dataset generated expressly for testing this hypothesis will be required for a convincing answer. Finally, we suggest that when using bioinformatic programs to search for DVGs, it is best to run the same dataset through multiple programs and look at the overlap to inform decisions on downstream characterization.

1202農芸化学
ad
ad
Follow
ad
タイトルとURLをコピーしました