非ハロゲン系有機太陽電池で20.02%の効率を達成(Researchers Achieve 20.02% PCE in Non-Halogenated Organic Solar Cells with Novel Giant Acceptors)

2025-12-09 中国科学院(CAS)

中国科学院寧波材料技術工程研究所(NIMTE)の葛子宜教授らの研究チームは、非ハロゲン溶媒で作製可能な高効率有機太陽電池(OSC)を実現する新しい「巨大アクセプター」を開発した。酸素含有リンカーを導入した巨大ゲストアクセプター G-1O および G-3O をPM6:BTP-eC9系に添加することで、結晶化速度を制御し、過度な凝集を抑えつつ均一な相分離構造を形成できることを示した。特に短い側鎖をもつG-1Oは分子平面性を高め、電荷輸送を促進し電圧損失を低減した。その結果、トルエンを用いた非ハロゲンプロセスにもかかわらず、変換効率19.90%を達成し、反射防止膜の導入により20.02%まで向上した。さらに、15.6 cm²の大面積モジュールでも16.97%の高効率を示し、量産性と環境適合性を両立したOSC技術として注目される。成果は Advanced Materials 誌に掲載された。

非ハロゲン系有機太陽電池で20.02%の効率を達成(Researchers Achieve 20.02% PCE in Non-Halogenated Organic Solar Cells with Novel Giant Acceptors)
The chemical structures of the designed guest component and BTP-eC9. (Image by NIMTE)

<関連情報>

新規酸素化リンカーを有する巨大アクセプターが分子結晶化速度を調節し、高効率非ハロゲン処理有機太陽電池を実現する A Giant Acceptor with a Novel Oxygenated Linker Modulates Molecular Crystallization Kinetics for High-Efficiency Non-Halogenated-Processed Organic Solar Cells

Lin Xie, Pengfei Ding, Xueliang Yu, Xiaoqi Yu, Daobin Yang, HaoTian Hu, Tongqiang Liu, Qirui Zhang, Jinsheng Zhang, Ze Jing, Zhenxin Shao, Jintao Zhu, Zhenyu Chen, Xuke Li, Juanfang Xu …
Advanced Materials  Published: 24 November 2025
DOI:https://doi.org/10.1002/adma.202511584

Abstract

The use of low-boiling-point halogenated solvents is common in lab-scale organic solar cell (OSC) fabrication to achieve high power conversion efficiencies (PCEs), but their high volatility hinders large-scale fabrication. High-boiling-point, non-halogenated solvents are adopted as alternatives, but they often result in significant efficiency losses due to inferior morphology. In this work, toluene is adopted, enabling scalable production without any post-treatment. Two giant guest acceptors, featuring distinct oxygenated side chains, are introduced to modulate pre-aggregation in solution and crystallization kinetics within the PM6:BTP-eC9 blend. The incorporation of giant acceptors effectively inhibits rapid acceptor aggregation and promotes smaller phase separation. Moreover, G-1O with a shorter oxygenated side chain yields more homogeneous phase separation, whereas G-3O with a longer side chain leads to uneven separation. Therefore, the G-1O-based ternary device achieves an outstanding PCE of 20.02%. Notably, a high PCE of 16.97% is also obtained in a large-area module (15.6 cm2, without dead zone). These findings highlight the critical role of oxygenated side-chain engineering in guest molecules for tuning crystallization kinetics under toluene processing.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました