高効率・高安定のペロブスカイト太陽電池のための低極性溶媒溶解パッシベーターを開発(Scientists Develop Low-Polarity Solvent-Soluble Passivator for Efficient and Stable Perovskite Solar Cells)

2025-11-04 中国科学院(CAS)

中国科学院寧波材料技術与工程研究所の葛子義教授と北京大学の屈波教授の研究チームは、低極性溶媒に溶解可能な新型パッシベータ「DCTP」を開発した。従来の高極性溶媒依存型パッシベータがペロブスカイト層に欠陥を生じさせる課題を克服し、効率と安定性を両立。DCTPはトルエンやクロロベンゼンなど低極性溶媒に可溶で、表面損傷を防ぎながら欠陥を補償し、エネルギー準位を最適化、イオン拡散を抑制した。結果、変換効率26.07%を達成し、非極性溶媒処理型PSCとして最高値を記録。900時間後も効率の90.1%を維持し、高性能・量産型太陽電池への新たな道を示した。

高効率・高安定のペロブスカイト太陽電池のための低極性溶媒溶解パッシベーターを開発(Scientists Develop Low-Polarity Solvent-Soluble Passivator for Efficient and Stable Perovskite Solar Cells)
DCTP’s solubility in low-polarity solvents without surface damage versus conventional passivators. (Image by NIMTE)

<関連情報>

ビスホスホネート埋め込みπ共役不動態化剤が低極性溶媒処理による効率的かつ安定したnipペロブスカイト太陽電池を実現 Bisphosphonate-Embedded a π-Conjugated Passivator Enable Efficient and Stable n-i-p Perovskite Solar Cells with Low-Polarity Solvent Processing

Xiaochun Liao, Yueli Liu, Xinyue Cao, Jie Wu, Tongqiang Liu, Pengfei Ding, Jialei Liu, Qiaoling Zuo, He Sun, Bo Qu, Lixin Xiao, Daobin Yang, Ziyi Ge
Advanced Materials  Published: 04 October 2025
DOI:https://doi.org/10.1002/adma.202513151

Abstract

Interface passivators play a critical role in improving the efficiency of perovskite solar cells (PSCs). However, the conventional passivators often require processing in high-polarity solvents that can cause additional surface defects on the perovskite film, thereby reducing the efficiency and stability of n-i-p PSCs. Herein, a bisphosphate molecule (named DCTP) is designed and synthesized to simultaneously address solvent compatibility, defect passivation, and hole extraction. DCTP has good solubility in low-polarity solvents such as toluene, chlorobenzene, and chloroform without damaging the perovskite surface. The chlorobenzene-processed DCTP interlayer can sufficiently passivate the defects on the perovskite surface and improve the energy level arrangement at the perovskite/hole transporting layer interface. Meanwhile, the DCTP layer effectively inhibits interlayer diffusion of formamidine (FA+), iodide (I), and lithium (Li+) and ions under thermal stress. As a result, the DCTP-controlled device produces a champion power conversion efficiency (PCE) of 26.07% with excellent reproducibility, compared to 24.28% for the reference device. More importantly, the operational stability of the device is significantly improved. The DCTP-treated device retains 90.1% of its initial PCE after 900 h of maximum power point tracking (MPPT) at 65 °C under the ISOS-L-2I protocol.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました