AIモデルで洪水を予測し水管理を改善(AI-powered model predicts floods, improves water management worldwide)

2025-10-27 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の趙鵬(Chaopeng Shen)教授らは、AIと物理法則に基づく数理モデルを統合した全球水文モデルを開発し、洪水予測と水資源管理の精度を大幅に向上させた。従来の地域限定モデルと異なり、解像度36km(詳細地域では6km)で世界中の河川流量・地下水・蒸発散を高精度に再現。AIが観測データからパラメータを自動学習し、物理モデルが水循環の整合性を保証する「ハイブリッド手法」により、従来の手動調整作業を不要とした。解析により、気候変動によって河川と地下水のバランスが年・地域ごとに大きく変動していることや、欧州では流量減少により河口の塩分上昇が起きていることなどを確認。モデルは農業計画・災害防止・生態系保全にも応用可能で、将来的には水質・栄養塩循環・3D地下水マッピングも組み込む予定。成果は『Nature Communications』誌に掲載。

<関連情報>

物理学を組み込んだ学習によって明らかになった、世界各地の水文学的応答パターンと傾向 Distinct hydrologic response patterns and trends worldwide revealed by physics-embedded learning

Haoyu Ji,Yalan Song,Tadd Bindas,Chaopeng Shen,Yuan Yang,Ming Pan,Jiangtao Liu,Farshid Rahmani,Ather Abbas,Hylke Beck,Kathryn Lawson & Yoshihide Wada
Nature Communications  Published:15 October 2025
DOI:https://doi.org/10.1038/s41467-025-64367-1

AIモデルで洪水を予測し水管理を改善(AI-powered model predicts floods, improves water management worldwide)

Abstract

To track rapid changes within our water sector, Global Water Models (GWMs) need to realistically represent hydrologic systems’ response patterns — such as the baseflow fraction of streamflow — but are hindered by their limited ability to learn from data. Here we introduce a high-resolution, physics-embedded, big-data-trained model to reliably capture characteristic hydrologic response patterns (signatures) and their shifts. By realistically representing the long-term water balance, the model revealed widespread shifts — in some cases, more than 20% over 20 years — in fundamental green-blue-water partitioning and baseflow ratios worldwide. Shifts in these previously-assumed-static response patterns contributed to increasing flood risks in northern mid-latitudes, heightening water supply stresses in southern subtropical regions, and declining freshwater inputs to many European estuaries, all with ecological implications. With substantially more accurate simulations at monthly and daily scales than current operational systems, this next-generation model resolves large, nonlinear, seasonal runoff responses to rainfall (elasticity) and streamflow flashiness in semi-arid and arid regions. Our results highlight regions with management challenges due to large water supply variability and high climate sensitivity, and demonstrate an advanced tool to forecast seasonal water availability. This capability enables global-scale models to deliver reliable and locally-relevant insights for water management.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました