幅広い化学反応に対応するAIフレームワーク「CatDRX」~高性能触媒設計を加速し、持続可能な化学・製薬産業に貢献~

2025-10-23 九州大学

九州大学の研究チームは、化学反応の触媒設計を効率化するAIフレームワーク「CatDRX」を開発した。CatDRXは実験データと量子化学計算を統合し、触媒反応の速度や選択性を高精度に予測できる。機械学習モデルが電子状態や反応経路を自動解析し、幅広い反応系に対応可能で、触媒設計のコストと時間を大幅に削減する。さらに、未知反応への汎用性も実証され、産業化学やエネルギー変換触媒への応用が期待される。研究成果は『Nature Communications』誌に掲載。

幅広い化学反応に対応するAIフレームワーク「CatDRX」~高性能触媒設計を加速し、持続可能な化学・製薬産業に貢献~
図1 CatDRXによって入力した反応条件に最適な触媒構造が提案される枠組みのイメージ図

<関連情報>

CatDRX を用いた触媒設計と最適化のための反応条件付き生成モデル Reaction-conditioned generative model for catalyst design and optimization with CatDRX

Apakorn Kengkanna,Yuta Kikuchi,Takashi Niwa & Masahito Ohue
Communications Chemistry  Published:23 October 2025
DOI:https://doi.org/10.1038/s42004-025-01732-7

Abstract

Designing effective catalysts is a key process for optimizing catalytic reactions to reduce time and waste during scale-up. Recently proposed approaches, including generative models, show promise in identifying new catalysts. However, they are mostly developed for specific reaction classes and predefined fragment categories without considering reaction components, limiting the exploration of novel catalysts across reaction space. Here, we present CatDRX, a catalyst discovery framework powered by a reaction-conditioned variational autoencoder generative model for generating catalysts and predicting their catalytic performance. The model is pre-trained on a broad reaction database and fine-tuned for downstream reactions. Our approach achieves competitive performance in both yield and related catalytic activity prediction. Additionally, it enables effective generation of potential catalysts given reaction conditions by integrating optimization toward desired properties and validation based on reaction mechanisms and chemical knowledge, as demonstrated in various case studies. This work helps facilitate and advance catalyst design and discovery for chemical and pharmaceutical industries.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました