カリフォルニア工科大学、6100量子ビットアレイで記録更新(Caltech Team Sets Record with 6,100-Qubit Array)

2025-09-24 カリフォルニア工科大学

カリフォルニア工科大学(Caltech)の研究チームは、光トラッピング技術を用いて6,100量子ビットからなるアレイの実現に成功し、従来記録を大幅に更新した。量子ビットはレーザーで個別制御される中性原子で構成され、これほど大規模な配列を安定的に生成したのは初めて。研究チームは、システムの拡張性と制御精度の両立を示し、大規模量子シミュレーションや量子計算への応用の道を開いたとする。成果はNature誌に発表された。

カリフォルニア工科大学、6100量子ビットアレイで記録更新(Caltech Team Sets Record with 6,100-Qubit Array)
This image shows 6,100 cesium atoms trapped by highly focused laser beams called optical tweezers. The width of the circle is about one millimeter.Credit: Caltech/Endres Lab

<関連情報>

6100個の高コヒーレント原子量子ビットを備えたピンセットアレイ A tweezer array with 6100 highly coherent atomic qubits

Hannah J. Manetsch,Gyohei Nomura,Elie Bataille,Xudong Lv,Kon H. Leung & Manuel Endres
Nature  Published:24 September 2025
DOI:https://doi.org/10.1038/s41586-025-09641-4

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Abstract

Optical tweezer arrays 1,2 have transformed atomic and molecular physics, now forming the backbone for a range of leading experiments in quantum computing 3–8, simulation 1,9–12, and metrology 13–15. Typical experiments trap tens to hundreds of atomic qubits, and recently systems with around one thousand atoms were realized without defining qubits or demonstrating coherent control 16–18. However, scaling to thousands of atomic qubits with long coherence times, low-loss, and high-fidelity imaging is an outstanding challenge and critical for progress in quantum science, particularly towards quantum error correction 19,20. Here, we experimentally realize an array of optical tweezers trapping over 6,100 neutral atoms in around 12,000 sites, simultaneously surpassing state-of-the-art performance for several metrics that underpin the success of the platform. Specifically, while scaling to such a large number of atoms, we demonstrate a coherence time of 12.6(1) seconds, a record for hyperfine qubits in an optical tweezer array. We show room-temperature trapping lifetimes of  ~ 23 minutes, enabling record-high imaging survival of 99.98952(1)% with an imaging fidelity of over 99.99%. We present a plan for zone-based quantum computing 5,21 and demonstrate necessary coherence-preserving qubit transport and pick-up/drop-off operations on large spatial scales, characterized through interleaved randomized benchmarking. Our results, along with recent developments 8,22–24, indicate that universal quantum computing and quantum error correction with thousands to tens of thousands of physical qubits could be a near-term prospect.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました