量子世界への窓を開く:新たな実験装置による量子研究(Opening a window into the quantum world)

2025-09-16 オックスフォード大学

オックスフォード大学物理学科のUltracold Quantum Matterグループは、ルビジウム原子を絶対零度近くまで冷却し、レーザーと磁場で制御することで「量子シミュレーター」を構築。原子を二層に分離し量子トンネル効果を観測するなど、従来計算困難だった量子挙動を実験的に再現している。最新成果では二層系が摩擦のない電子流れを高温で維持でき、新しい物質相の創出可能性が示された。これは超伝導材料や量子デバイス研究に直結し、物質科学・量子技術のブレークスルーを後押しする。研究は「Nature Communications」に掲載。

量子世界への窓を開く:新たな実験装置による量子研究(Opening a window into the quantum world)
A red glowing cloud of rubidium atoms visible in the Ultracold Quantum Matter group’s experiment. Credit: Erik Rydow, Ultracold Quantum Matter group.

<関連情報>

層間コヒーレンスを有する二層系超流動体の観測 Observation of a bilayer superfluid with interlayer coherence

Erik Rydow,Vijay Pal Singh,Abel Beregi,En Chang,Ludwig Mathey,Christopher J. Foot & Shinichi Sunami
Nature Communications  Published:05 August 2025
DOI:https://doi.org/10.1038/s41467-025-62277-w

Abstract

Controlling the coupling between different degrees of freedom in many-body systems is a powerful technique for engineering novel phases of matter. We create a bilayer system of two-dimensional (2D) ultracold Bose gases and demonstrate the controlled generation of bulk coherence through tunable interlayer Josephson coupling. We probe the resulting correlation properties of both phase modes of the bilayer system: the symmetric phase mode is studied via a noise-correlation method, while the antisymmetric phase fluctuations are directly captured by matter-wave interferometry. The measured correlation functions for both of these modes exhibit a crossover from short-range to quasi-long-range order above a coupling-dependent critical point, thus providing direct evidence of bilayer superfluidity mediated by interlayer coupling. We map out the phase diagram and interpret it with renormalization-group theory and Monte Carlo simulations. Additionally, we elucidate the underlying mechanism through the observation of suppressed vortex excitations in the antisymmetric mode.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました