世界初!土壌団粒単位の微生物シングルセルゲノム解析に成功~微生物の多様性と窒素循環機能の解明への足掛かり~

2025-09-12 農研機構,愛媛大学,bitBiome株式会社

農研機構、東北大学、愛媛大学、bitBiome社の共同研究により、世界で初めて「土壌団粒」単位での微生物シングルセルゲノム解析が実現した。団粒内部から超音波処理で効率的に微生物を抽出し、培養を経ずにゲノム情報を取得することに成功。複数団粒の解析から、いずれも高い多様性を持つ微生物群集が存在し、窒素循環を担うほぼ全ての機能遺伝子が揃っていることが判明した。また、温室効果ガスN₂Oを無害なN₂に変換する「N₂O消去菌」も抽出され、微生物群集が冗長性を持つことで環境変化に安定して対応できることが示唆された。この技術は、従来困難だった土壌微生物機能の個別解明を可能にし、農地からの温室効果ガス削減や持続可能な農業・生態系保全への応用が期待される。成果は Frontiers in Microbiology に掲載された。

世界初!土壌団粒単位の微生物シングルセルゲノム解析に成功~微生物の多様性と窒素循環機能の解明への足掛かり~
図. 土壌団粒中の孔隙(黄色土)
ミクロスケール観察によって調べました(備考2. 光延・和穎(2025)より転載)。Open孔隙は団粒外の大気と繋がった孔隙、Closed孔隙は繋がっていない孔隙です。

<関連情報>

単一土壌団塊の単一細胞ゲノミクス:窒素代謝に焦点を当てた方法論的評価と潜在的な示唆
Single-cell genomics of single soil aggregates: methodological assessment and potential implications with a focus on nitrogen metabolism

Emi Matsumura,Hiromi Kato,Shintaro Hara,Tsubasa Ohbayashi,Koji Ito,Ryo Shingubara,Tomoya Kawakami,Satoshi Mitsunobu,Tatsuya Saeki,Soichiro Tsuda,Kiwamu Minamisawa,Rota Wagai
Frontiers in Microbiology  Published:07 April 2025
DOI:https://doi.org/10.3389/fmicb.2025.1557188

Soil particles in plant rooting zones are largely clustered to form porous structural units called aggregates where highly diverse microorganisms inhabit and drive biogeochemical cycling. The complete extraction of microbial cells and DNA from soil is a substantial task as certain microorganisms exhibit strong adhesion to soil surfaces and/or inhabit deep within aggregates. However, the degree of aggregate dispersion and the efficacy of extraction have rarely been examined, and thus, adequate cell extraction methods from soil remain unclear. We aimed to develop an optimal method of cell extraction for single-cell genomics (SCG) analysis of single soil aggregates by focusing on water-stable macroaggregates (diameter: 5.6–8.2 mm) from the topsoil of cultivated Acrisol. We postulated that the extraction of microorganisms with distinct taxonomy and functions could be achieved depending on the degree of soil aggregate dispersion. To test this idea, we used six individual aggregates and performed both SCG sequencing and amplicon analysis. While both bead-vortexing and sonication dispersion techniques improved the extractability of bacterial cells compared to previous ones, the sonication technique led to more efficient dispersion and yielded a higher number and more diverse microorganisms than the bead technique. Furthermore, the analyses of nitrogen cycling and exopolysaccharides-related genes suggested that the sonication-assisted extraction led to the greater recovery of microorganisms strongly attached to soil particles and/or inhabited the aggregate subunits that were more physically stable (e.g., aggregate core). Further SCG analysis revealed that all six aggregates held intact microorganisms holding the genes (potentials) to convert nitrate into all possible nitrogen forms while some low-abundance genes showed inter-aggregate heterogeneity. Overall, all six aggregates studied showed similarities in pore characteristics, phylum-level composition, and microbial functional redundancy. Together, these results suggest that water-stable macroaggregates may act as a functional unit in soil and show potential as a useful experimental unit in soil microbial ecology. Our study also suggests that conventional methods employed for the extraction of cells and DNA may not be optimal. The findings of this study emphasize the necessity of advancing extraction methodologies to facilitate a more comprehensive understanding of microbial diversity and function in soil environments.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました