量子コンピュータアーキテクチャにおけるブレークスルー(Jianxin Chen’s group achieves breakthrough in quantum computer architecture)

2025-09-03 清華大学

清華大学の陳健新准教授率いる研究チームは、北京量子情報科学研究院と協力し、量子コンピュータの命令セットアーキテクチャで新方式「AshN」を開発しました。AshNは任意の2量子ビットゲートを直接プログラム可能とし、従来必要だったCNOTなどへの分解を不要にします。これにより操作回数を削減し、誤差蓄積を抑制、さらに最短時間での量子進化を実現できます。技術的にはフラックス制御とマイクロ波駆動を組み合わせ、全ての2量子ビットユニタリー作用をカバー可能としました。実装は超伝導量子ビットプラットフォームで実証され、その有効性が確認されています。この成果はASPLOS 2024で発表され、量子物理学とコンピュータアーキテクチャの融合を示す重要な一歩であり、将来的なフォールトトレラント量子計算の基盤になると期待されています。

量子コンピュータアーキテクチャにおけるブレークスルー(Jianxin Chen’s group achieves breakthrough in quantum computer architecture)

The effect of implementing common two-qubit gates such as CNOT, iSWAP, and B with AshN instruction microarchitecture.

<関連情報>

統一制御を用いた任意の2量子ビットゲートの高効率実装 Efficient implementation of arbitrary two-qubit gates using unified control

Zhen Chen,Weiyang Liu,Yanjun Ma,Weijie Sun,Ruixia Wang,He Wang,Huikai Xu,Guangming Xue,Haisheng Yan,Zhen Yang,Jiayu Ding,Yang Gao,Feiyu Li,Yujia Zhang,Zikang Zhang,Yirong Jin,Haifeng Yu,Jianxin Chen & Fei Yan
Nature Physics  Published:15 August 2025
DOI:https://doi.org/10.1038/s41567-025-02990-x

Abstract

The set of quantum logic gates that can be easily implemented is fundamental to the performance of quantum computers, as it governs the accuracy of basic quantum operations and dictates the complexity of implementing quantum algorithms. Traditional approaches to extending gate sets often require operating devices outside the ideal parameter regimes used to realize qubits, leading to increased control complexity while offering only a limited set of gates. Here we experimentally demonstrate a unified and versatile gate scheme capable of generating arbitrary two-qubit gates using only an exchange interaction and qubit driving on a superconducting quantum processor. We achieve high fidelities averaging 99.38% across a wide range of commonly used two-qubit unitaries, enabling precise multipartite entangled state preparation. Furthermore, we successfully produce a B gate, which efficiently synthesizes the entire family of two-qubit gates. Our results establish that fully exploiting the capabilities of the exchange interaction can yield a comprehensive and highly accurate gate set. With maximum expressivity, optimal gate time, demonstrated high fidelity and easy adaption to other quantum platforms, our unified control scheme offers the prospect of improved performance in quantum hardware and algorithm development.

 

すべてを支配する単一ゲート方式:量子計算のための複雑でありながら簡素化された命令セットの導入 One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing

Jianxin Chen, Dawei Ding, Weiyuan Gong, Cupjin Huang, Qi Ye
ASPLOS ’24: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems  Published: 27 April 2024
DOI:https://doi.org/10.1145/3620665.3640386

Abstract

The design and architecture of a quantum instruction set are paramount to the performance of a quantum computer. This work introduces a gate scheme for qubits with XX + YY coupling that directly and efficiently realizes any two-qubit gate up to single-qubit gates. First, this scheme enables high-fidelity execution of quantum operations, especially when decoherence is the primary error source. Second, since the scheme spans the entire SU(4) group of two-qubit gates, we can use it to attain the optimal two-qubit gate count for algorithm implementation. These two advantages in synergy give rise to a quantum Complex yet Reduced Instruction Set Computer (CRISC). Though the gate scheme is compact, it supports a comprehensive array of quantum operations. This may seem paradoxical but is realizable due to the fundamental differences between quantum and classical computer architectures.

Using our gate scheme, we observe marked improvements across various applications, including generic n-qubit gate synthesis, quantum volume, and qubit routing. Furthermore, the proposed scheme also realizes a gate locally equivalent to the commonly used CNOT gate with a gate time of π/2g, where g is the two-qubit coupling. The AshN scheme is also completely impervious to ZZ error, the main coherent error in transversely coupled systems, as the control parameters implementing the gates can be easily adjusted to take the ZZ term into account.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました