高温流体中での希土類元素の分子レベル挙動を観測(Molecular Insights into Rare Earth Element Transformations in Hydrothermal Fluids)

2025-08-19 パシフィック・ノースウェスト

PNNLの研究チームは、熱水流体中における希土類元素(REE)の挙動を分子スケールで解明した。イッテルビウムイオン(Yb³⁺)と硫酸塩リガンドの相互作用を、放射光X線吸収分光(EXAFS)とab initio分子動力学シミュレーションで解析した結果、温度上昇に伴い配位構造が大きく変化することが判明。室温では水と硫酸塩が混在した配位構造を持つが、200℃では硫酸塩との結合が強まり、300℃では硫酸塩が主配位子となって析出を誘発する構造へと移行することが示された。これにより、硫酸塩はREEの輸送だけでなく、高温下での析出を促す触媒的役割を果たすことが初めて分子レベルで確認された。本成果は地殻におけるREE鉱床形成メカニズムの理解を進め、資源探査や抽出技術設計に重要な理論的基盤を提供する。

高温流体中での希土類元素の分子レベル挙動を観測(Molecular Insights into Rare Earth Element Transformations in Hydrothermal Fluids)Ytterbium undergoes a temperature-driven transformation in hydrothermal fluid, affecting the formation of rare Earth element ores.(Image by Xiaodong Zhao | Pacific Northwest National Laboratory)

<関連情報>

X線吸収スペクトルに基づく第一原理分子動力学シミュレーションにより得られた知見から、硫酸を含む熱水流体中のYb(III)の種分化に関する分子レベルでの洞察 Molecular insights into Yb(III) speciation in sulfate-bearing hydrothermal fluids from X-ray absorption spectra informed by ab initio molecular dynamics

Xiaodong Zhao, Duo Song, Sebastian T. Mergelsberg, Micah P. Prange, Daria Boglaienko, Zihua Zhu, Zheming Wang, Carolyn I. Pearce, Chengjun Sun, Kevin M. Rosso, Xiaofeng Guo, Xin Zhang
Geochimica et Cosmochimica Acta  Available online: 9 July 2025
DOI:https://doi.org/10.1016/j.gca.2025.07.010

Abstract

Rare earth elements (REEs) are critical for advanced technologies, yet in hydrothermal aqueous solutions the molecular level details of their interaction with ligands that control their geochemical transport and deposition remain poorly understood. This study elucidates the coordination behavior of Yb3+ in sulfate-rich hydrothermal fluids using in situ extended X-ray absorption fine structure (EXAFS) spectroscopy and ab initio molecular dynamics (AIMD) simulations. By integrating multi-angle EXAFS with AIMD-derived constraints, we precisely resolve Yb3+ coordination structures and ligand interactions under hydrothermal conditions. At room temperature, Yb3+ is coordinated by five water molecules and two sulfate ligands (coordination number, CN = 8), forming a distorted square antiprism geometry. Increasing temperature induces progressive dehydration, reducing the hydration shell and favoring stronger sulfate complexation. At 200°C, sulfate ligands reorganize around Yb3+, shifting its geometry to a capped octahedron (CN = 7). At 300 °C, sulfate binding dominates, leading to structural reorganization that parallels the onset of sulfate mineral precipitation, consistent with the retrograde solubility of REE sulfates. These findings provide direct molecular-scale evidence that sulfate acts as both a transport and deposition ligand, critically influencing REE mobility in geochemical environments. Our results can also help to refine thermodynamic models of REE speciation in high-temperature hydrothermal fluids and improve our understanding of REE ore formation processes in nature.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました