双極子励起子ポラリトンの存在を観測(Researchers Observe Evidence of Hyperbolic Exciton Polaritons)

2025-08-013 米国再生可能エネルギー研究所(NREL)

NRELなどの国際研究チームは、双曲型励起子ポラリトン(HEP)を自然環境下で初めて観測した。HEPは光と励起子が強く結合して生じる準粒子で、特定の結晶軸で誘電率の符号が異なる双曲型材料でのみ現れ、光の回折限界を超えるナノスケール光操作を可能にする。研究ではバンデルワールス磁性半導体CrSBrを用い、超低温近赤外近接場顕微鏡で直接検出。成果は光・物質相互作用の制御や量子ポラリトニクス、光電子デバイスの性能向上に道を開く。

双極子励起子ポラリトンの存在を観測(Researchers Observe Evidence of Hyperbolic Exciton Polaritons)Hyperbolic region in chromium sulfur bromide (CrSBr): a) This schematic shows the metallized tapping tip of a scattering-type scanning near-field optical microscope illuminated by free-space light with momentum k0. The tip activates waveguide modes that couple to excitons in CrSBr. b) Dielectric functions show that in the orange band (hyperbolic region) they have opposite signs along the a and b axis.

<関連情報>

ファンデルワールス磁石における双曲線型エキソンポラリトン Hyperbolic exciton polaritons in a van der Waals magnet

Francesco L. Ruta,Shuai Zhang,Yinming Shao,Samuel L. Moore,Swagata Acharya,Zhiyuan Sun,Siyuan Qiu,Johannes Geurs,Brian S. Y. Kim,Matthew Fu,Daniel G. Chica,Dimitar Pashov,Xiaodong Xu,Di Xiao,Milan Delor,X-Y. Zhu,Andrew J. Millis,Xavier Roy,James C. Hone,Cory R. Dean,Mikhail I. Katsnelson,Mark van Schilfgaarde & D. N. Basov
Nature Communications

An Author Correction to this article was published on 27 February 2024
This article has been
updated

Abstract

Exciton polaritons are quasiparticles of photons coupled strongly to bound electron-hole pairs, manifesting as an anti-crossing light dispersion near an exciton resonance. Highly anisotropic semiconductors with opposite-signed permittivities along different crystal axes are predicted to host exotic modes inside the anti-crossing called hyperbolic exciton polaritons (HEPs), which confine light subdiffractionally with enhanced density of states. Here, we show observational evidence of steady-state HEPs in the van der Waals magnet chromium sulfide bromide (CrSBr) using a cryogenic near-infrared near-field microscope. At low temperatures, in the magnetically-ordered state, anisotropic exciton resonances sharpen, driving the permittivity negative along one crystal axis and enabling HEP propagation. We characterize HEP momentum and losses in CrSBr, also demonstrating coupling to excitonic sidebands and enhancement by magnetic order: which boosts exciton spectral weight via wavefunction delocalization. Our findings open new pathways to nanoscale manipulation of excitons and light, including routes to magnetic, nonlocal, and quantum polaritonics.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました