成層圏への新たな気候観測技術(A New Window into Earth’s Upper Atmosphere)

2025-08-13 ハーバード大学

ハーバード大学SEASとシカゴ大学の研究チームは、観測が困難な高度50〜100kmの中間圏で利用できる新しい観測手法を開発した。太陽光によるフォトフォレシス効果を活用し、片面が加熱された軽量ナノ構造膜が周囲のガス分子との相互作用で浮力を得て浮遊する。アルミナとクロムを用いた膜設計により、光だけで重力を上回る浮力を発生させ、日射の55%条件下・26.7Pa(高度約60km相当)の低圧環境で浮遊を実証。気候観測や通信など中間圏での新たな応用が期待される。

成層圏への新たな気候観測技術(A New Window into Earth’s Upper Atmosphere)
An illustration of the devices’ use cases. Credit: Ben Schafer and Jong-hyoung Kim.

<関連情報>

近宇宙環境下における穿孔構造物の光誘起飛行 Photophoretic flight of perforated structures in near-space conditions

Benjamin C. Schafer,Jong-hyoung Kim,Felix Sharipov,Gyeong-Seok Hwang,Joost J. Vlassak & David W. Keith
Nature  Published:13 August 2025
DOI:https://doi.org/10.1038/s41586-025-09281-8

Abstract

Lightweight nanofabricated structures could photophoretically loft payloads in near-space. Proposed structures range from microscale engineered aerosols1, to centimetre-scale thin disks with variations in surface accommodation coefficients2,3, to sandwich structures with nanoscale thickness4,5 that might be extended to metre-scale width6,7. Quantitative understanding of how structural and surface properties determine photophoretic lofting forces is necessary to develop a practical flying device. Here we focus on thermal transpiration as the most promising photophoretic mechanism for lofting large devices8 and present a hybrid analytical–numerical model of the lofting force on a structure that consists of two perforated membranes spaced a small distance apart. We identify optimal structural parameters, including device size, membrane perforation density and distribution of the vertical ligaments that connect the two membranes, each as a function of atmospheric altitude. Targeting these optimal parameters, we fabricate structures with a heterogeneous ligament distribution, which efficiently compromises between structural rigidity and photophoretic performance. We measure how lofting forces generated by these structures depend on pressure using gases with three different molecular weights. We observed photophoretic levitation of a 1-cm-wide structure at an air pressure of 26.7 Pa when illuminated by 750 W m−2, about 55% the intensity of sunlight. Lastly, we describe the preliminary design of a 3-cm-radius device with 10-mg payload capacity at 75-km altitudes and discuss horizontal motion control, overnight settling, and applications in climate sensing, communications and Martian exploration.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました