ディープラーニングモデルが有毒プルームが都市をどのように移動するかを予測する(Deep-learning model predicts how toxic plumes move through cities)

ローレンスリバモア国立研究所(LLNL)

ローレンス・リバモア国立研究所(LLNL)の研究者は、都市部での毒性プルームの動きを数分で予測可能なディープラーニングモデル「ST‑GasNet」を開発。従来のCFD法が数時間かかるのに対し、本モデルは高解像度CFDデータを学習し、初期挙動から後の拡散を高精度で予測。風向などを明示せずとも内部で推定し、90%以上の精度で分布を予測できる。リアルタイム計算が可能で、災害時の避難支援や初動対応に有用とされる。

<関連情報>

ディープラーニングによる都市有毒プルームの時空間予測 Spatiotemporal predictions of toxic urban plumes using deep learning

Yinan Wang , M Giselle Fernández-Godino , Nipun Gunawardena , Donald D Lucas , Xiaowei Yue
PNAS Nexus  Published::19 June 2025
DOI:https://doi.org/10.1093/pnasnexus/pgaf198

ディープラーニングモデルが有毒プルームが都市をどのように移動するかを予測する(Deep-learning model predicts how toxic plumes move through cities)

Abstract

Industrial accidents, chemical spills, and structural fires can release large amounts of harmful materials that disperse into urban atmospheres and impact populated areas. Computer models are typically used to predict the transport of toxic plumes by solving fluid dynamical equations. However, these models can be computationally expensive due to the need for many grid cells to simulate turbulent flow and resolve individual buildings and streets. In emergency response situations, alternative methods are needed that can run quickly and adequately capture important spatiotemporal features. Here, we present a novel deep learning model called ST-GasNet inspired by the mathematical equations that govern the behavior of plumes as they disperse through the atmosphere. ST-GasNet learns the spatiotemporal dependencies from a limited set of temporal sequences of ground-level toxic urban plumes generated by a high-resolution large eddy simulation model. On independent sequences, ST-GasNet accurately predicts the late-time spatiotemporal evolution, given the early-time behavior as an input, even when a building splits a large plume into smaller plumes. By incorporating large-scale wind boundary condition information, ST-GasNet achieves a prediction accuracy of at least 90% on test data for the entire prediction period.

1101大気管理
ad
ad
Follow
ad
タイトルとURLをコピーしました