水の渦を使って惑星形成を模擬する実験(Water Tornado in the Laboratory: A Simple Experiment Simulates Planet Formation)

2025-07-22 マックス・プランク研究所(MPG)

水の渦を使って惑星形成を模擬する実験(Water Tornado in the Laboratory: A Simple Experiment Simulates Planet Formation)
This photo shows the upper part of the water tornado model. The acrylic glas tank has a diameter of 50 centimetres and is illuminated with LED strips. The water forms a vortex whose surface shape reproduces the profile of a gravitational field. The analysis showed that the motion of the water closely resembles the behaviour seen in protoplanetary discs.
© S. Schütt (University of Greifswald)

ドイツのグライフスヴァルト大学とハイデルベルク天文学研究所(MPIA)の研究グループは、単純な水の渦(ウォータートルネード)を用いて、原始惑星系円盤におけるガスとダストの流れを実験的に再現する装置を開発しました。直径50cmのアクリル水槽に水を循環させて渦を作り、重力ポテンシャルに似た水面形状とケプラー運動則に則った浮遊粒子の軌道を確認。コストが低く構築も容易なため、理論や数値シミュレーションを補完する実験手法として期待されます。特に微粒子と流体の相互作用を観察し、惑星形成の理解を深める新しいアプローチです。

<関連情報>

竜巻に基づくケプラー流の実験室モデル A tornado-based laboratory model for Keplerian flows

S Knauer , S Schütt , M Flock , F Scharmer , S Haag , N Fahrenkamp , A Melzer , D M Siegel , P Manz
Monthly Notices of the Royal Astronomical Society: Letters  Published:03 July 2025
DOI:https://doi.org/10.1093/mnrasl/slaf070

ABSTRACT

We introduce a laboratory experiment utilizing a water tornado to model Keplerian flows, which are relevant to astrophysical accretion discs. The tornado is generated by opposing water jet streams, creating a hyperbolic free surface that acts like a gravitational potential. Key findings demonstrate that tracer particles show a Keplerian rotation profile with Ω∝r-3/2 and conserved area speed, aligning with Kepler’s third and second law. The experiment enables the determination of dimensionless quantities such as the flow’s Reynolds number and the tracer particles’ Stokes numbers. The effective Reynolds numbers measured,Re2×105⁠, are within the range for turbulent protoplanetary discs of Re103–105⁠. The recovered Stokes numbers (ranging between 10-2and 10-5) show excellent agreement with the major dust component. Furthermore, the set-up’s advantages include its ability to achieve a large ratio between inner and outer radii, allowing for the study of global dynamics instead of local shear flows. It is diagnostically very accessible and geometrically flexible. The experiment opens a new avenue for studying the interaction between dust and gas in protoplanetary discs, relevant to grain growth and planet formation.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました