東アジア夏季モンスーンの3000万年の進化史を解明(Study Reveals 30-million-year History of East Asian Summer Monsoon Evolution)

ad

2025-04-21 中国科学院(CAS)

中国科学院の研究チームは、南シナ海北部の堆積物を用いて、過去3,000万年間の東アジア夏季モンスーン(EASM)の降水変動を定量的に再構築した。シリケート鉱物の風化反応を指標にしたモデルを用い、温暖湿潤なモンスーン気候の強弱が鉱物組成(カオリナイトとイライトの比)に与える影響を分析。地球の温度変動とチベット高原の隆起がモンスーン降水における主要な駆動因であることが明らかとなり、将来的なCO₂濃度上昇によってEASM降水の増加が予測される。ただし過去の気候解釈には地質活動の影響を慎重に考慮する必要があると指摘された。

<関連情報>

気温と地形隆起の相互作用が漸新世以降の東アジアモンスーン降雨の進化を形成した Interactive forces of temperature and topographic uplift shaped the East Asian monsoon rainfall evolution since the Oligocene

Shiming Wan, Debo Zhao , Hualong Jin, Yingying Sha, Zhengguo Shi, Peter D. Clift, Zhimin Jian, Chang Liu, Carlos Alvarez Zarikian, Christian France-Lanord, Zhaojie Yu, Jin Zhang, Wenjun Jiao, Xuebo Yin, Anchun Li
The Innovation Geoscience  Published:14 April 2025
DOI:https://doi.org/10.59717/j.xinn-geo.2025.100141

GRAPHICAL ABSTRACT

東アジア夏季モンスーンの3000万年の進化史を解明(Study Reveals 30-million-year History of East Asian Summer Monsoon Evolution)

PUBLIC SUMMARY

  • A 30 Ma monsoon rainfall history of East Asia was reconstructed with weathering records in South China Sea.
  • Monsoon rainfall was primary driven by global climate but disrupted by Himalayas and Tibetan Plateau uplift.
  • Monsoon rainfall at the cold Pliocene was comparable with the warm Oligocene due to the topographic uplift.

ABSTRACT

The debate concerning the long-term evolution of the East Asian summer monsoon (EASM) and its governing mechanisms persists, often attributed to either the uplift of the Tibetan Plateau or global temperature changes. This disagreement arises from the scarcity of comprehensive, high-resolution monsoon records. Utilizing continuous sedimentary records from the South China Sea and a weathering-rainfall-temperature regression model, we have quantified the evolution of EASM rainfall in South China since 30 Ma. Our findings indicate that, apart from a notable and sustained increase in monsoon rainfall between approximately 21 and 13 Ma, rainfall patterns generally mirrored global temperature trends, suggesting that global climate change was the primary controlling factor. Based on model simulations, we attribute the anomalous enhanced EASM during ~21‒13 Ma primarily to the dominant influence of the major uplift of the Himalaya-Tibetan Plateau, with temperature effects playing a limited background role. This topographic change disrupted the close coupling between temperature and rainfall, resulting in a relatively humid and habitable East Asia despite the ongoing global cooling trend since the late Miocene. This study clearly disentangles the roles of long-term temperature regulation and the short-term impacts of Himalaya-Tibetan Plateau uplift on the evolution of the EASM since 30 Ma.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました