AIトレーニングデータのプライバシー保護技術を開発(New Method Efficiently Safeguards Sensitive AI Training Data)

ad

2025-04-11 マサチューセッツ工科大学(MIT)

MITの研究チームは、AIモデルの精度を維持しつつ、訓練データの機密性を保護する新たな手法「PAC Privacy」を開発しました。この手法は、アルゴリズムの内部構造にアクセスせずに、ほぼすべてのアルゴリズムに適用可能な4ステップのテンプレートを提供します。また、計算効率を向上させ、精度とプライバシーのトレードオフを改善しました。研究では、医療画像や財務記録などの機密データを含む複数の機械学習アルゴリズムにPAC Privacyを適用し、安定性の高いアルゴリズムほどプライバシー保護が容易であることを示しました。この成果は、AIの現実世界での安全な活用を促進する可能性があります。

<関連情報>

PAC-Private Algorithms

Mayuri Sridhar,Hanshen Xiao,Srinivas Devadas

AIトレーニングデータのプライバシー保護技術を開発(New Method Efficiently Safeguards Sensitive AI Training Data)

Abstract

Provable privacy typically requires involved analysis and is often associated with unacceptable accuracy loss. While many empirical verification or approximation methods, such as Membership Inference Attacks (MIA) and Differential Privacy Auditing (DPA), have been proposed, these do not offer rigorous privacy guarantees. In this paper, we apply recently-proposed Probably Approximately Correct (PAC) Privacy to give formal, mechanized, simulation-based proofs for a range of practical, black-box algorithms: K-Means, Support Vector Machines (SVM), Principal Component Analysis (PCA) and Random Forests. To provide these proofs, we present a new simulation algorithm that efficiently determines anisotropic noise perturbation required for any given level of privacy. We provide a proof of correctness for this algorithm and demonstrate that anisotropic noise has substantive benefits over isotropic noise. Stable algorithms are easier to privatize, and we demonstrate privacy amplification resulting from introducing regularization in these algorithms; meaningful privacy guarantees are obtained with small losses in accuracy. We propose new techniques in order to reduce instability in algorithmic output and convert intractable geometric stability verification into efficient deterministic stability verification. Thorough experiments are included, and we validate our provable adversarial inference hardness against state-of-the-art empirical attacks.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました