ロボットがリアルタイムで適切な判断を下すのを助ける(Helping Robots Make Good Decisions in Real Time)

ad

2024-12-04 カリフォルニア工科大学(Caltech)

カリフォルニア工科大学(Caltech)の研究者たちは、ロボットがリアルタイムで適切な意思決定を行うための新たなアルゴリズムを開発しています。この取り組みは、ロボットが動的な環境下で迅速かつ正確に行動を選択できるようにすることを目的としています。特に、自己学習機能を備えたシステムの構築に焦点を当てており、これによりロボットは経験から学び、時間とともにパフォーマンスを向上させることが期待されています。この技術は、自動運転車や災害救助ロボットなど、リアルタイムでの意思決定が求められる多くの応用分野での活用が見込まれています。

<関連情報>

動的システムによる計画のためのスペクトル展開を用いたモンテカルロ・ツリー探索 Monte Carlo tree search with spectral expansion for planning with dynamical systems

Benjamin Rivière, John Lathrop, and Soon-Jo Chung
Science Robotics  Published:4 Dec 2024
DOI:https://doi.org/10.1126/scirobotics.ado1010

ロボットがリアルタイムで適切な判断を下すのを助ける(Helping Robots Make Good Decisions in Real Time)

Editor’s summary

Autonomous robots require effective decision-making processes to adapt to complex new environments. Monte Carlo tree search (MCTS) is a planning algorithm that uses real-time computation to strategically explore future decisions, but it cannot be directly applied to generate physical motions for robots. Rivière et al. have now developed Spectral Expansion Tree Search that enables real-time MCTS-based planning by computing an efficient discrete representation of the physical world. The framework was deployed on various robots that were shown to be capable of autonomously discovering optimal trajectories to avoid dynamic obstacles, traverse windy gusts, support a human driver in shared control tasks, and capture and redirect an uncontrolled agent. —Amos Matsiko

Abstract

The ability of a robot to plan complex behaviors with real-time computation, rather than adhering to predesigned or offline-learned routines, alleviates the need for specialized algorithms or training for each problem instance. Monte Carlo tree search is a powerful planning algorithm that strategically explores simulated future possibilities, but it requires a discrete problem representation that is irreconcilable with the continuous dynamics of the physical world. We present Spectral Expansion Tree Search (SETS), a real-time, tree-based planner that uses the spectrum of the locally linearized system to construct a low-complexity and approximately equivalent discrete representation of the continuous world. We prove that SETS converges to a bound of the globally optimal solution for continuous, deterministic, and differentiable Markov decision processes, a broad class of problems that includes underactuated nonlinear dynamics, nonconvex reward functions, and unstructured environments. We experimentally validated SETS on drone, spacecraft, and ground vehicle robots and one numerical experiment, each of which is not directly solvable with existing methods. We successfully show that SETS automatically discovers a diverse set of optimal behaviors and motion trajectories in real time.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました