ゴツゴツ、デコボコの雹: 雹のリアルな形状が悪天候のモデリングを改善する可能性(Lumpy, bumpy hail: Realistic hail shapes may improve modeling of severe weather)

ad

2024-10-22 ペンシルベニア州立大学(PennState)

ゴツゴツ、デコボコの雹: 雹のリアルな形状が悪天候のモデリングを改善する可能性(Lumpy, bumpy hail: Realistic hail shapes may improve modeling of severe weather)
A gargantuan hailstone that fell in Argentina may have set a world record, according to researchers. Credit: Victoria Druetta . All Rights Reserved.

ペンシルベニア州立大学の研究チームは、現実的な形状の雹を使った新しいモデルが、危険な気象現象の理解を向上させる可能性があることを発見しました。従来の数値モデルでは雹を球体として扱っていましたが、実際には雹はデコボコしているため、その形状が成長や動きに影響を与えます。この研究により、雹の形状が予測に与える影響が明らかになり、より精度の高い警報を発するための手段が提供されることが期待されています。

<関連情報>

非球状の雹のモデル化 Modeling non-spherical hailstones

Yuzhu Lin,Matthew R. Kumjian,Joshua Soderholm, and Ian Giammanco
Journal of the Atmospheric Sciences  Published:31 Jul 2024
DOI:https://doi.org/10.1175/JAS-D-23-0231.1

Abstract

Hail research and forecasting models necessarily involve explicit or implicit – and uncertain – physical assumptions regarding hailstones’ shape, tumbling behavior, fallspeed, and thermal energy transfer. Whereas most models assume spherical hailstones, we relax this assumption by using hailstone shape data from field observations to establish empirical size-shape relationships with reasonable degrees of randomness considering hailstones’ natural shape variability, capturing the observed distribution of tri-axial ellipsoidal shapes. We also incorporate explicit, random tumbling of individual hailstones during their growth to simulate their free-falling behavior and the resultant changes in cross-sectional area (which affects growth by hydrometeor collection.) These physical attributes are incorporated in calculating hailstones’ fallspeeds, using either empirical or analytical relationships based on each hailstone’s Best and Reynolds numbers. Options for drag coefficient modification are added to emulate hailstones’ rough surfaces (lobes), which then modifies their thermal energy and vapor exchange with the environment. We investigate how applying these physical assumptions about nonspherical hail into the Penn State hail growth trajectory model, coupled with Cloud Model 1 supercell simulations, impacts hail production, and examine the reasons behind the resulting variability in hail statistics. The choice of hailstone size-mass relation and fallspeed scheme have the strongest influence on hail sizes. Using non-spherical, tumbling hailstones reduces the number of large hailstones produced. Applying shape-specific thermal energy transfer coefficients subtly increases sizes; the effects of lobes vary depending on the fallspeed scheme used. These physical assumptions, although adding complexity to modeling, can be parameterized efficiently and potentially used in microphysics schemes.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました