2つの半導体材料の界面を移動する光励起電荷を世界で初めて可視化した(Researchers create the first ever visualization of photoexcited charges traveling across the interface of two semiconductor materials)

ad

2024-10-10 カリフォルニア大学サンタバーバラ校(UCSB)

カリフォルニア大学サンタバーバラ校の研究者たちは、異なる半導体材料の界面を通過する電荷の移動を初めて直接可視化することに成功しました。この研究では、超高速電子顕微鏡(SUEM)を用い、シリコンとゲルマニウムのヘテロ接合での「ホット」な光キャリアの動きを撮影しました。これにより、理論上の予測や間接的な測定結果と実際の現象を比較できるようになります。この技術は、半導体デバイスの設計や性能向上に役立つと期待されています。

<関連情報>

超高速電子顕微鏡による半導体ヘテロ接合を横切るホットフォトキャリア移動のイメージング Imaging hot photocarrier transfer across a semiconductor heterojunction with ultrafast electron microscopy

Basamat S. Shaheen, Kenny Huynh, Yujie Quan, +4, and Bolin Liao
Proceedings of the National Academy of Sciences  Published:September 26, 2024
DOI:https://doi.org/10.1073/pnas.2410428121

2つの半導体材料の界面を移動する光励起電荷を世界で初めて可視化した(Researchers create the first ever visualization of photoexcited charges traveling across the interface of two semiconductor materials)

Significance

Semiconductor heterojunctions are crucial for optoelectronic devices. Despite the remarkable performance achieved, a complete understanding of the intricate interplay of the junction electrical potentials and charge transport phenomena across the heterojunction interface is missing. In particular, the “hot” photocarriers immediately after optical excitation play a crucial role in photovoltaic, photocatalytic, and photosensing devices, but their interaction with the heterojunction remains not understood. In this work, we apply scanning ultrafast electron microscopy to provide a holistic view of photoexcited charge dynamics in a Si/Ge heterojunction. We find that the built-in potential and the band offsets drastically modify the diffusion process of hot photocarriers across the heterojunction due to charge trapping, with significant implications for hot-carrier-based applications.

Abstract

Semiconductor heterojunctions have gained significant attention for efficient optoelectronic devices owing to their unique interfaces and synergistic effects. Interaction between charge carriers with the heterojunction plays a crucial role in determining device performance, while its spatial-temporal mapping remains lacking. In this study, we employ scanning ultrafast electron microscopy (SUEM), an emerging technique that combines high spatial-temporal resolution and surface sensitivity, to investigate photocarrier dynamics across a Si/Ge heterojunction. Charge dynamics are selectively examined across the junction and compared to far bulk areas, through which the impact of the built-in potential, band offsets, and surface effects is directly visualized. In particular, we find that the heterojunction drastically modifies the hot photocarrier diffusivities in both Si and Ge regions due to charge trapping. These findings are further elucidated with insights from the band structure and surface potential measured by complementary techniques. This work demonstrates the tremendous effect of heterointerfaces on hot photocarrier dynamics and showcases the potential of SUEM in characterizing realistic optoelectronic devices.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました