化学研究開発を支援する機械学習モデルが最優秀論文賞を受賞(Machine learning models to support chemical R&D recognised with Best Paper Award)

ad

2024-08-27 インペリアル・カレッジ・ロンドン(ICL)

インペリアル・カレッジとBASFのチームは、化学研究開発(R&D)を支援するAI技術で「Computers & Chemical Engineering Best Paper Award 2023」を受賞しました。彼らの研究は、限られた実験数で最適な製造条件を見つけるために、ベイズ最適化という統計手法を改良し、化学業界での特定のR&Dに適用しました。この新しいアルゴリズムは、実験コストを削減しながら効果的な結果を得ることを目指し、実世界の問題に合わせた実験設計を支援するものです。

<関連情報>

珪藻土を用いた珪素化合物の化学的性質に関する研究 Combining multi-fidelity modelling and asynchronous batch Bayesian Optimization

Jose Pablo Folch, Robert M. Lee, Behrang Shafei, David Walz, Calvin Tsay, Mark van der Wilk, Ruth Misener
Computers & Chemical Engineering  Available online: 23 February 2023
DOI:https://doi.org/10.1016/j.compchemeng.2023.108194

化学研究開発を支援する機械学習モデルが最優秀論文賞を受賞(Machine learning models to support chemical R&D recognised with Best Paper Award)

Highlights

  • We propose a new Bayesian Optimization algorithm.
  • The approach combines multi-fidelity and asynchronous batch methods.
  • Algorithm outperforms single-fidelity batch and multi-fidelity sequential methods.
  • We consider an application in designing materials for optimal battery performance.

Abstract

Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behaviour, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました