エアロゾルが雲細胞のサイズを大きくし、汚染された条件下でより大きな放射冷却を引き起こす(Aerosols Increase Size of Cloud Cells, Causing Greater Radiative Cooling Under Polluted Conditions)

ad

2024-06-25 パシフィック・ノースウェスト国立研究所(PNNL)

科学者たちは、エアロゾルが雲を明るくし、冷却効果をもたらすことを発見しましたが、この効果の不確実性が温暖化を隠す可能性があります。グラシオサ島の大気放射測定サイトでの観測に基づき、エアロゾル濃度が高まると降雨が抑制され、雲内の水滴が増えることが示されました。研究者たちは、エアロゾルと雲の相互作用を追跡するラグランジュ枠組みを開発し、これを気象研究予報モデル(WRF)に組み込みました。この枠組みは、衛星データや航空機測定を利用して雲水、降水、エアロゾル間の非線形因果関係を明らかにします。シミュレーションでは、エアロゾルが増えると雲が広がり、太陽放射の反射が増加することが分かりました。この研究は、雲制御プロセスの改善と将来の気候変動予測の理解に貢献します。

<関連情報>

エアロゾルによる海上雲セルの閉鎖:降水があると効果が高まる Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation

Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmospheric Chemistry and Physics  Published:03 Jun 2024
DOI:https://doi.org/10.5194/acp-24-6455-2024

エアロゾルが雲細胞のサイズを大きくし、汚染された条件下でより大きな放射冷却を引き起こす(Aerosols Increase Size of Cloud Cells, Causing Greater Radiative Cooling Under Polluted Conditions)

Abstract

The Weather Research Forecasting (WRF) version 4.3 model is configured within a Lagrangian framework to quantify the impact of aerosols on evolving cloud fields. Kilometer-scale simulations utilizing meteorological boundary conditions are based on 10 case study days offering diverse meteorology during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). Measurements from aircraft, the ground-based Atmosphere Radiation Measurement (ARM) site at Graciosa Island in the Azores, and A-Train and geostationary satellites are utilized for validation, demonstrating good agreement with the WRF-simulated cloud and aerosol properties. Higher aerosol concentration leads to suppressed drizzle and increased cloud water content in all case study days. These changes lead to larger radiative cooling rates at cloud top, enhanced vertical velocity variance, and increased vertical and horizontal wind speed near the base of the lower-tropospheric inversion. As a result, marine cloud cell area expands, narrowing the gap between shallow clouds and increasing cloud optical thickness, liquid water content, and the top-of-atmosphere outgoing shortwave flux. While similar aerosol effects are observed in lightly to non-raining clouds, they tend to be smaller by comparison. These simulations show a relationship between cloud cell area expansion and the radiative adjustments caused by liquid water path and cloud fraction changes. The adjustments are positive and scale as 74 % and 51 %, respectively, relative to the Twomey effect. While higher-resolution large-eddy simulations may provide improved representation of cloud-top mixing processes, these results emphasize the importance of addressing mesoscale cloud-state transitions in the quantification of aerosol radiative forcing that cannot be attained from traditional climate models.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました