AIが将来の停電を防ぐ可能性(Study: AI could prevent future power outages)

ad

2024-06-24 バッファロー大学(UB)

バッファロー大学の研究者たちは、電力網が停電を防ぐために電力を自動的にリルートする人工知能モデルを開発しました。このシステムは「自己修復グリッド」技術の初期例であり、AIを使用して停電などの問題を人間の介入なしに自動的に検出し修正します。現実の電力網に適用・拡大する前にさらなる研究が必要ですが、研究チームはテストネットワークでこのソリューションが電力を使用者にリルートする代替経路を自動的に特定できることを示しました。この技術は、将来の停電に対する電力システムの回復力を高めるための重要なステップです。

<関連情報>

グラフ上の強化学習を用いたアクティブ配電網におけるリアルタイム停電管理 Real-time outage management in active distribution networks using reinforcement learning over graphs

Roshni Anna Jacob,Steve Paul,Souma Chowdhury,Yulia R. Gel & Jie Zhang
Nature Communications  Published:04 June 2024
DOI:https://doi.org/10.1038/s41467-024-49207-y

AIが将来の停電を防ぐ可能性(Study: AI could prevent future power outages)

Abstract

Self-healing smart grids are characterized by fast-acting, intelligent control mechanisms that minimize power disruptions during outages. The corrective actions adopted during outages in power distribution networks include reconfiguration through switching control and emergency load shedding. The conventional decision-making models for outage mitigation are, however, not suitable for smart grids due to their slow response and computational inefficiency. Here, we present a graph reinforcement learning model for outage management in the distribution network to enhance its resilience. The distinctive characteristic of our approach is that it explicitly accounts for the underlying network topology and its variations with switching control, while also capturing the complex interdependencies between state variables (along nodes and edges) by modeling the task as a graph learning problem. Our model learns the optimal control policy for power restoration using a Capsule-based graph neural network. We validate our model on three test networks, namely the 13, 34, and 123-bus modified IEEE networks where it is shown to achieve near-optimal, real-time performance. The resilience improvement of our model in terms of loss of energy is 607.45 kWs and 596.52 kWs for 13 and 34 buses, respectively. Our model also demonstrates generalizability across a broad range of outage scenarios.

0401発送配変電
ad
ad
Follow
ad
タイトルとURLをコピーしました