2023-12-14 アルゴンヌ国立研究所(ANL)
◆この成果は、アメリカエネルギー省のQ-NEXTセンターによって支援されました。ダイヤモンドとリチウムナイオブ酸塩の組み合わせは、量子通信ネットワークや量子計算機の信頼性向上に寄与する可能性があり、今後の量子技術の進展に期待が寄せられています。
<関連情報>
- https://www.anl.gov/article/a-promising-pairing-scientists-demonstrate-new-combination-of-materials-for-quantum-science
- https://pubs.acs.org/doi/10.1021/acsphotonics.3c00992
ダイヤモンドカラーセンターと薄膜ニオブ酸リチウムの効率的なフォトニック集積化 Efficient Photonic Integration of Diamond Color Centers and Thin-Film Lithium Niobate
Daniel Riedel, Hope Lee, Jason F. Herrmann, Jakob Grzesik, Vahid Ansari, Jean-Michel Borit, Hubert S. Stokowski, Shahriar Aghaeimeibodi, Haiyu Lu, Patrick J. McQuade, Nicholas A. Melosh, Zhi-Xun Shen, Amir H. Safavi-Naeini, and Jelena Vučković
ACS Photonics Published:December 4, 2023
DOI:https://doi.org/10.1021/acsphotonics.3c00992
Abstract
On-chip photonic quantum circuits with integrated quantum memories have the potential to radically advance hardware for quantum information processing. In particular, negatively charged group-IV color centers in diamond are promising candidates for quantum memories as they combine long storage times with excellent optical emission properties and an optically addressable spin state. However, as a material, diamond lacks the many functionalities needed to realize scalable quantum systems. Thin-film lithium niobate (TFLN), in contrast, offers a number of useful photonic nonlinearities, including the electro-optic effect, piezoelectricity, and capabilities for periodically poled quasi-phase matching. Here, we present the highly efficient heterogeneous integration of diamond nanobeams containing negatively charged silicon-vacancy (SiV) centers with TFLN waveguides. We observe greater than 90% transmission efficiency between the diamond nanobeam and the TFLN waveguide on average across multiple measurements. By comparing saturation signal levels between confocal and integrated collection, we estimate a more than 10-fold increase in photon emission channeled into TFLN waveguides versus that channeled into out-of-plane collection channels. Our results constitute a key step for creating scalable integrated quantum photonic circuits that leverage the advantages of both diamond and TFLN materials.