火星探査機パーサヴィアランスが火星上で自律的に位置特定を実現(NASA’s Perseverance Now Autonomously Pinpoints Its Location on Mars)

2026-02-18 NASA

NASAは、火星探査車Perseveranceが火星上で自律的に現在地を特定する新機能を導入したと発表した。これまでは地球との通信に依存して位置を補正していたが、新たに搭載された視覚ベースの航法技術により、周囲の地形画像と軌道データを照合し、自ら高精度で位置を割り出せるようになった。これにより走行効率が向上し、科学観測や試料採取の精度も高まる。通信遅延のある火星環境下での自律性強化は、将来の探査活動やサンプルリターン計画の成功に向けた重要な前進となる。

火星探査機パーサヴィアランスが火星上で自律的に位置特定を実現(NASA’s Perseverance Now Autonomously Pinpoints Its Location on Mars)

This panorama from Perseverance is composed of five stereo pairs of navigation camera images that the rover matched to orbital imagery in order to pinpoint its position on Feb. 2, 2026, using a technology called Mars Global Localization.NASA/JPL-Caltech

<関連情報>

Censible: 惑星表面探査ミッションのための堅牢かつ実用的なグローバル位置推定フレームワーク Censible: A Robust and Practical Global Localization Framework for Planetary Surface Missions

Jeremy Nash; Quintin Dwight; Lucas Saldyt; Haoda Wang; Steven Myint; Adnan Ansar,…
2024 IEEE International Conference on Robotics and AutomationDate   Added to IEEE Xplore: 08 August 2024
DOI:https://doi.org/10.1109/ICRA57147.2024.10611697

Abstract

To achieve longer driving distances, planetary robotics missions require accurate localization to counteract position uncertainty. Freedom and precision in driving allows scientists to reach and study sites of interest. Typically, rover global localization has been performed manually by humans, which is accurate but time-consuming as data is relayed between planets. This paper describes a global localization algorithm that is run onboard the Perseverance Mars rover. Our approach matches rover images to orbital maps using a modified census transform to achieve sub-meter accurate, near-human localization performance on a real dataset of 264 Mars rover panoramas. The proposed solution has also been successfully executed on the Perseverance Mars Rover, demonstrating the practicality of our approach.

0302航行援助施設
ad
ad
Follow
ad
タイトルとURLをコピーしました