自動クラウド監視を可能にする画像分類モデルを開発(Automated Image Classification Model Enables Automated Cloud Monitoring)

2026-02-09 中国科学院(CAS)

中国科学院新疆天文台の研究チームは、全天カメラ画像から雲量を自動判定する画像分類モデル「ASCNet」を開発し、『Research in Astronomy and Astrophysics』に発表した。ムズタグ・アタ観測地で検証され、複雑な照明条件下でも安定動作する。ResNetによる天空全体の意味情報抽出と、ASCModuleによる雲構造の局所輝度テクスチャ解析を組み合わせた二重チャネル構造を採用。手動分類との一致率は約92.7%に達し、典型的な雲状態を高精度に識別した。観測地の継続的監視の効率化と自動化を促進し、精密化する天文観測を支える技術基盤となる。

<関連情報>

ASCNet: ムズタグ・アタ観測地における全天カメラ画像分類に関する研究 ASCNet: Research on All-sky Camera Image Classification at the Muztagh-ata Site

Siqi Wang, Qi Fan, Wenbo Gu, Haozhi Wang, AYZADA Jumahali, Lixian Shen, Daiping Zhang, Liyong Liu and Ali Esamdin
Research Astronomy and Astrophysics  Published: 8 January 2026
DOI:10.1088/1674-4527/ae25c7

Abstract

Cloud coverage is one of the crucial elements of site testing in astronomy. All-sky camera (ASC) images are beneficial for our research on cloud coverage. In this paper, we propose ASCNet, an innovative model specifically designed for classifying nighttime ASC images collected at the Muztagh-ata site from 2022 March to 2024 June. ASCNet integrates ResNet34 with an ASCModule, which employs Depthwise Dilated Convolution and embeds lightweight Squeeze-and-Excitation attention within its branches to extract fine-grained texture information from the luminance channel. The data set is partitioned by category, with 70% of images assigned to the training set and 30% to the test set. The model’s performance is assessed by comparing its predictions on the test set with manually annotated labels, yielding a consistency rate of 92.7%. All evaluation metrics of ASCNet are as follows: Accuracy 92.66%, Precision 83.26%, Recall 84.25%, and F1-Score 83.67%, and both ablation and comparative experiments demonstrate significant superiority over other models. A confusion matrix is utilized to analyze the differences between manual classification and model classification. The statistical results demonstrate the model’s excellent classification performance and its robust generalization ability, illustrating that ASCNet has potential for application in future astronomical image classifications.

0300航空・宇宙一般
ad
ad
Follow
ad
タイトルとURLをコピーしました