モアレ材料における超伝導発現の新たなメカニズムを解明(How Superconductivity Emerges: New Insights from Moire Materials)

2026-02-05 ゲーテ大学

超伝導がどのように出現するかという重要な物理の問いに対し、層状材料をわずかにねじった「モアレ(moiré)材料」での最新研究が新たな知見をもたらした。 ultrathinな結晶層をわずかに回転させると、電子の動きが著しく変わり、強く相関した電子状態や磁性、従来理論では説明できない「非従来型超伝導」が現れる。この国際共同研究では、高分解能走査トンネル顕微鏡と理論モデルを組み合わせ、強い相関状態から超伝導がどのように発生するのかを直接的に観察した。鍵となる発見は、超伝導は通常の金属状態からではなく、すでに対称性が破れた強く相関した状態から生じている点である。電子の“バレー”という自由度の渦巻状秩序や、温度・磁場に依存する複数のエネルギーギャップの存在が明らかになり、常状態と超伝導状態の密接な関係が示された。この成果は、Nature誌に掲載され、将来的に新たな量子材料や高性能超伝導体の開発につながる可能性がある。

<関連情報>

モアレ超伝導体における谷間ギャップと多体共鳴の解明 Resolving intervalley gaps and many-body resonances in moiré superconductors

Hyunjin Kim,Gautam Rai,Lorenzo Crippa,Dumitru Călugăru,Haoyu Hu,Youngjoon Choi,Lingyuan Kong,Eli Baum,Yiran Zhang,Ludwig Holleis,Kenji Watanabe,Takashi Taniguchi,Andrea F. Young,B. Andrei Bernevig,Roser Valentí,Giorgio Sangiovanni,Tim Wehling & Stevan Nadj-Perge
Nature  Published:04 February 2026
DOI:https://doi.org/10.1038/s41586-025-10067-1

モアレ材料における超伝導発現の新たなメカニズムを解明(How Superconductivity Emerges: New Insights from Moire Materials)

Abstract

Magic-angle twisted multilayer graphene stands out as a highly tunable class of moiré materials that exhibit strong electronic correlations and robust superconductivity1,2,3,4. However, understanding the relationships between the low-temperature superconducting phase and the preceding correlated parent states remains a challenge. Here we use scanning tunnelling microscopy (STM) and spectroscopy to track the formation sequence of correlated phases established by the interplay of dynamic correlations, intervalley coherence and superconductivity in magic-angle twisted trilayer graphene (MATTG). We discover the existence of two well-resolved gaps pinned at the Fermi level within the superconducting doping range. Although the outer gap, previously associated with the pseudogap phase5,6, persists at high temperatures and magnetic fields, the newly revealed inner gap is more fragile, in line with previous transport experiments1,2,4. Andreev reflection spectroscopy taken at the same location confirms a clear trend that closely follows the doping behaviour of the inner gap and not the outer one. Moreover, spectroscopy taken at nanoscale domain boundaries further corroborates the contrasting behaviour of the two gaps, with the inner gap remaining resilient to structural variations. By comparing our results with recent topological heavy fermion (THF) models that include dynamical correlations7,8, we find that the outer gap probably arises from a splitting of the Abrikosov–Suhl–Kondo resonance9,10 owing to the breaking of the valley symmetry. Our results indicate an intricate yet tractable hierarchy of correlated phases in twisted multilayer graphene.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました