量子カオスに潜む秩序「擬ギャップ」の解明 (Hidden order in quantum chaos: the pseudogap)

2026-01-29 ミュンヘン大学(LMU)

ドイツ・ミュンヘン大学(LMU)の研究チームは、量子カオスと考えられてきた系の中に「隠れた秩序」が存在することを理論的に示した。研究の焦点は「擬ギャップ(pseudogap)」と呼ばれる現象で、これは本来連続的であるはずのエネルギー状態の分布に部分的な欠落が生じる状態を指す。研究者らは、強く相互作用する量子多体系において、完全な無秩序ではなく、エネルギースペクトルに構造的な制約が現れることを明らかにした。この擬ギャップは、量子カオスと量子秩序の中間的性質を示すもので、従来の統計的理論では説明が困難だった現象を理解する新たな枠組みを提供する。成果は、強相関電子系や高温超伝導体などの基礎理解にもつながる可能性があり、量子物質研究の理論的基盤を拡張するものと位置づけられる。

量子カオスに潜む秩序「擬ギャップ」の解明 (Hidden order in quantum chaos: the pseudogap)
Illustration of the quantum gas microscope:This device enables researchers to image atoms in high resolution and visualize both their spatial position and their magnetic correlations. | © Titus Franz, MPQ

<関連情報>

擬ギャップ開始時のスピン-電荷相関の出現スケーリングの観測 Observation of emergent scaling of spin–charge correlations at the onset of the pseudogap

Thomas Chalopin, Petar Bojović, Si Wang, +11 , and Immanuel Bloch
Proceedings of the National Academy of Sciences  Published:January 23, 2026
DOI:https://doi.org/10.1073/pnas.2525539123

Significance

Understanding strongly correlated fermions constitutes a major challenge of modern physics. Here, we take a significant step in this direction, by the finding of a universal scaling of spin and charge correlations upon entering the pseudogap phase in the paradigmatic Hubbard model, using our ultracold atom quantum simulator. This leads to a quantitative description of how doping suppresses the spin stiffness, concurrent with the emergence of dominant higher-order correlations that we observe in the system. Our characterization of the magnetic properties of the pseudogap in the paradigmatic Hubbard model paves the way for future studies of further collective phases of matter that the pseudogap is believed to give way to at even lower temperatures.

Abstract

In strongly correlated materials, interacting electrons are entangled and form collective quantum states, resulting in rich low-temperature phase diagrams. Notable examples include cuprate superconductors, in which superconductivity emerges at low doping out of an unusual “pseudogap” metallic state above the critical temperature. The Fermi–Hubbard model, describing a wide range of phenomena associated with strong electron correlations, still offers major computational challenges despite its simple formulation. In this context, ultracold atoms quantum simulators have provided invaluable insights into the microscopic nature of correlated quantum states. Here, we use a quantum gas microscope Fermi–Hubbard simulator to explore a wide range of dopings and temperatures in a regime where a pseudogap is known to develop. By measuring multipoint correlation functions up to fifth order, we uncover a universal scaling behavior in magnetic and higher-order spin–charge correlations characterized by a doping-dependent temperature scale. Accurate comparisons with determinant Quantum Monte Carlo and Minimally Entangled Typical Thermal States simulations confirm that this temperature scale is comparable to the pseudogap temperature . Our quantitative findings reveal a qualitative behavior of magnetic properties and spin–charge correlations in an emergent pseudogap and pave the way toward the exploration of charge pairing and collective phenomena expected at lower temperatures.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました