デンキウナギの生物学から着想した高出力ゲル電池 (Electric Eel Biology Inspires Powerful Gel Battery)

2026-01-28 ペンシルベニア州立大学(Penn State)

米ペンシルベニア州立大学(Penn State)の研究チームは、デンキウナギの発電生物学に着想を得て、高出力かつ柔軟性を備えた新しいゲル型電池を開発した。デンキウナギは体内で多数の発電細胞を直列に配置することで高電圧を生み出すが、研究者らはこの構造原理を模倣し、イオン選択性ゲル層を積層する電池設計を実現した。開発された電池は、安全性が高く、機械的に柔らかいため、ウェアラブル機器や医療用インプラント、ソフトロボティクスへの応用が期待される。従来のリチウムイオン電池と異なり、可燃性材料を用いず、生体適合性にも優れる点が特徴である。本成果は、生物模倣(バイオミメティクス)による次世代エネルギー貯蔵技術の可能性を示している。

デンキウナギの生物学から着想した高出力ゲル電池 (Electric Eel Biology Inspires Powerful Gel Battery)
A hydrogel solution using the traditional chemical makeup (left) dehydrates after exposed to air for five days, while the team’s adjusted hydrogel (right) remains hydrated. The figure to the right demonstrates how traditional hydrogel (left) freezes solid in low temperatures, while the team’s adjusted hydrogel (right) remains unfrozen. Credit: Provided by Dor Tillinger. All Rights Reserved.

<関連情報>

電気魚に着想を得た薄型ハイドロゲル発電細胞が高出力密度と耐環境性を実現 Electric-Fish-Inspired Thin Hydrogel Electrocytes Achieve High Power Density and Environmental Robustness

Dor Tillinger, Wonbae Lee, Haley M. Tholen, Derek M. Hall, Joseph S. Najem
Advanced Science  Published: 07 December 2025
DOI:https://doi.org/10.1002/advs.202519348

Abstract

Electric-fish-inspired hydrogel-based power sources offer a promising platform for powering soft, wearable, and implantable electronics due to their compliance, biocompatibility, and biodegradability. They typically consist of high- and low-salinity gel layers separated by anion- and cation-selective gel compartments, generating an electric potential that emulates the diffusion-based energy mechanisms of electrocytes in electric fish. However, their development has been hindered by high internal resistance, limited power density, and poor environmental stability. Here, a scalable layer-by-layer spin-coating strategy is introduced to fabricate hydrogel electrocytes with precise thickness control, yielding 106.1 µm-thick units comparable to biological electrocytes. This thin architecture significantly reduces resistance and enables high instantaneous power density (44.0 kW m−3) with low area-normalized resistance (2.0 × 10−3 Ω m2.). By tailoring the hydrogel composition with a glycerol–carboxylated chitosan mixture, long-term hydration (>98.7% after 120 h at 60% RH) and antifreezing performance down to −80 °C are achieved without encapsulation. Furthermore, varying layer thickness provides tunable energy density, while integration of PEDOT:PSS hydrogel electrodes preserves material compliance and yields robust, ready-to-use power systems. These advances overcome critical barriers in hydrogel-based energy storage, establishing a versatile, scalable pathway toward stable, bioinspired power sources for next-generation wearable, implantable, and autonomous devices.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました