月視点観測により地球放射収支を高精度で把握できることを解明 (New Study Reveals Lunar Perspective Enables Accurate Capture of Earth’s Radiation Budget)

2026-01-26 中国科学院(CAS)

中国科学院大気物理研究所(IAP)を中心とする研究チームは、月面からの地球観測が地球放射収支を高精度に把握する有効な手段であることを明らかにした。地球放射収支は気候変動を理解する上で不可欠だが、低軌道衛星や静止衛星では時間的連続性と空間的一貫性の両立が難しいという課題があった。研究では、月から地球を完全な円盤として観測することで、局地的な気象ノイズを抑制し、惑星規模の支配的な放射変動を抽出できることを示した。解析の結果、地球放射の変動の約9割は一次・二次の球面調和関数で説明可能であり、これが地球固有の「放射指紋」を捉える鍵となることが分かった。また、月齢周期・恒星月周期・日周期といった放射変動の成因も整理され、月周回軌道と地球自転の影響が体系的に示された。本研究は、月面観測による全球的かつ長期的な気候監視の新たな可能性を示している。

月視点観測により地球放射収支を高精度で把握できることを解明 (New Study Reveals Lunar Perspective Enables Accurate Capture of Earth’s Radiation Budget)
Diagram comparing ultra-long-range, low-Earth orbit, and geostationary satellite observation systems. (Image by YE Hanlin)

<関連情報>

球面調和関数の指紋は、月ベースの円盤積分地球放射シグネチャを特徴づける Spherical Harmonic Fingerprints Characterize Moon-Based Disk-Integrated Earth’s Emitted Radiation Signatures

Hanlin Ye, Huadong Guo, Dong Liang, Mengxiong Zhou, Yin Jin, Guang Liu
Journal of Geophysical Research: Atmospheres  Published: 31 December 2025
DOI:https://doi.org/10.1029/2025JD044758

Abstract

A Moon-based radiometer enables disk-integrated measurements to capture planetary-scale variations in Earth’s emitted radiation. However, existing studies have neither unraveled the influence of orbital dynamics on such radiation nor quantified how clouds modify these periodic signatures at the planetary scale, which leaves the underlying mechanisms driving disk-integrated radiation variations obscure and makes it difficult to isolate the authentic signals of the planetary system. In this study, outputs from NASA’s Goddard Earth Observing System Version 5 (GEOS-5) model were mapped onto the Moon-based Earth observation geometry to simulate time-series data of disk-integrated radiation. The variability characteristics of this radiation were quantified via spherical harmonic decomposition, and the constructed spherical harmonic fingerprints effectively separate orbital dynamics and radiation signatures in disk-integrated observations. Results show that (a) Moon-based disk-integrated radiation variations are dominated by 1st- and 2nd-degree spherical harmonics, capturing large-scale radiative features while smoothing fine-scale fluctuations; (b) key cycles driven by Earth-Moon geometry include the synodic month, the sidereal month, and their semiperiodic counterparts, which are primarily governed by sectoral and zonal harmonic components, respectively; (c) clouds systematically reduce disk-integrated radiation but preserve orbital-driven periodicities, which averages out local cloud effects while retaining celestial motion signals. This study further discussed the potential of these observations to refine general circulation models (GCMs) via planetary-scale reality checks, as well as of bridging Earth system science and astrophysics by using Earth as a sample. In general, this study lays a foundation for interpreting disk-integrated radiation features in future missions.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました