溶解バロカロリック冷却を公開、ゼロカーボン冷媒への新たな道を開く(Scientists Unveil “Dissolution Barocaloric” Cooling, Opening New Path to Zero-carbon Refrigeration)

2026-01-22 中国科学院(CAS)

中国科学院金属研究所の李兵(LI Bing)教授率いる研究チームは、従来の冷凍技術の課題を克服する新原理「溶解バロカロリック効果(Dissolution Barocaloric Effect)」を提案し、その成果を2026年1月に Nature 誌で発表した。従来の蒸気圧縮冷却は高い電力消費とCO₂排出を伴い、固体冷却方式も熱伝達効率の低さが実用化の障壁となっていた。本研究では、チオシアン酸アンモニウムの水への溶解と圧力誘起析出を利用し、液体の流動性と固体カロリック材料の特性を融合。冷媒と熱媒体を一体化することで、高効率・高冷却能力・低炭素を同時に実現した。実験では最大54Kの冷却幅、67 J g⁻¹の冷却能力、約77%の高効率を示し、AIデータセンターなど高温環境での次世代ゼロエミッション冷却技術として期待されている。

<関連情報>

溶解時の極端な圧力熱量効果 Extreme barocaloric effect at dissolution

Kun Zhang,Yifang Liu,Ying Gao,Zhe Zhang,Haoyu Wang,Wanwu Li,Xiaoyan Fan,Jiayu Ding,Ziqi Guan,Shogo Kawaguchi,Zhaoxu Du,Jiaqing Zhang,Lei Su,Yiming Li,Runjian Jiang,Yifan Li,Yating Jia,Yanxu Wang,Jianchao Lin,Jinlong Zhu,Peng Tong,Suxin Qian,Kuo Li,Zhidong Zhang & Bing Li
Nature  Published:21 January 2026
DOI:https://doi.org/10.1038/s41586-025-10013-1

溶解バロカロリック冷却を公開、ゼロカーボン冷媒への新たな道を開く(Scientists Unveil “Dissolution Barocaloric” Cooling, Opening New Path to Zero-carbon Refrigeration)

Abstract

Refrigeration is indispensable to modern society1, yet the dominant vapour-compression systems rely on environmentally harmful fluorocarbon refrigerants with high global warming potential2,3,4. Solid-state caloric refrigeration offers a low-carbon alternative5,6,7, but its practical deployment has been hindered by limited cooling capacity and the inefficient indirect heat transfer that requires secondary fluids. Here we report an extreme barocaloric effect in NH4SCN aqueous solutions enabled by pressure-tuned dissolution and precipitation. This mechanism delivers an exceptionally large cooling capacity and markedly enhanced cooling efficiency. We obtain an in situ temperature drop of 26.8 K in the solution at room temperature, surpassing all known caloric materials. A Carnot-like cycle is designed to deliver 67 J g−1 cooling capacity per cycle with a second-law efficiency of 77%, benefiting from the extremely large temperature drops and direct heat transfer due to the self-circulating aqueous solution. Beyond the phase-transition scenario, this dissolution-based approach that combines the merits of current leading technologies emerges as a promising sustainable refrigeration solution.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました