電気化学的にスイッチングする新たな触媒分子を開発

2026-01-14 横浜国立大学

横浜国立大学の信田尚毅准教授らは、東京大学および北海道大学との共同研究により、電気化学的にスイッチング可能なハロゲン結合性相互作用をもつ新しい分子触媒(メディエータ)を開発した。電極上で触媒分子を一電子酸化することで相互作用が強化され、基質と複合体を形成し、プロトンと電子の協奏的移動(PCET)を可能にする。その結果、N-保護アミノビフェニルの分子内C–N結合形成反応が高効率かつ触媒的に進行することを実証した。電気化学的速度論解析と理論計算により反応機構を定量的に解明し、電気化学触媒設計の新たな指針を提示した。本成果は Journal of the American Chemical Society に掲載された。

電気化学的にスイッチングする新たな触媒分子を開発
図1. 今回開発した触媒とそれを用いたC-N結合形成反応

<関連情報>

ハロアントラセンメディエーターにおける酸化還元スイッチング可能なハロゲン結合が効率的な電気触媒C-Nカップリングを可能にする Redox-Switchable Halogen Bonding in Haloanthracene Mediators Enables Efficient Electrocatalytic C–N Coupling

Atsuki Hirama,Kayo Suda,Shohei Yoshinaga,Moto Kikuchi,Su-Gi Chong,Azusa Kikuchi,Yusuke Ishigaki,Daisuke Yokogawa,Mahito Atobe,and Naoki Shida
Journal of the American Chemical Society  Published: January 8, 2026
DOI:https://doi.org/10.1021/jacs.5c18175

Abstract

We report the development of redox mediators based on 9-halo-10-arylanthracenes that engage in halogen bonding only upon one-electron oxidation. This redox-switchable interaction enables an effective substrate preorganization and promotes intramolecular C–N bond formation via electrocatalysis. Systematic evaluation of halogenated mediators (1a–1c) across various N-protected 2-aminobiphenyl substrates revealed that the iodoanthracene derivative 1a exhibited superior catalytic performance. Building on this, we synthesized a series of 10-aryl-substituted iodoanthracenes (1d–1h) to further optimize the mediator structure. Kinetic analysis by foot-of-the-wave analysis identified 1h, bearing a 3,5-bis(trifluoromethyl)phenyl group, as a highly active mediator with an apparent rate constant over an order of magnitude higher than that of its counterparts. Bulk electrolysis experiments confirmed its remarkable performance, achieving high yields in short reaction times. Computational studies demonstrated that halogen bonding is markedly strengthened in the radical cation state, and that this interaction significantly enhances the acidity of the N–H bond in the substrates, enabling proton-coupled electron transfer (PCET) even with a weak base. Energy diagrams constructed from density functional theory calculations supported a mechanism in which the mediator not only facilitates PCET but also stabilizes cationic intermediates throughout the catalytic cycle. This work establishes a new design paradigm for redox mediators, where redox-induced noncovalent interactions can be harnessed to control both reactivity and selectivity. The concept of halogen-bonding-assisted PCET provides a powerful platform for advancing molecular electrocatalysis.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました