天の川銀河の星々が地球に送るニュートリノの量を初めてマッピング(How Many Ghost Particles All the Milky Way’s Stars Send Towards Earth)

2026-01-08 コペンハーゲン大学(UCPH)

コペンハーゲン大学の天体物理学チームは、銀河系内のすべての星が地球へ送っている「ゴースト粒子」ことニュートリノの放出量と起源を、これまでで最も詳細にマッピングしたモデルを発表した。ニュートリノは質量が極めて小さく、他の物質とほとんど反応しないため、通常は検出が困難だが、星の核での核反応や超新星爆発などによって生成され、地球を含む宇宙空間を無数に通過している。研究チームはESAのガイア望遠鏡データと高度な恒星モデルを組み合わせ、銀河中心付近の星々が特に多くのニュートリノを生み出していることを明らかにした。このニュートリノマップにより、地球上の巨大検出器の観測戦略を最適化できるほか、星の内部プロセスや銀河構造の理解が進むと期待される。また、ニュートリノの微妙な性質の違いが新しい物理学の発見につながる可能性もある。

天の川銀河の星々が地球に送るニュートリノの量を初めてマッピング(How Many Ghost Particles All the Milky Way’s Stars Send Towards Earth)
A map of the Milky Way based on data from ESA’s Gaia telescope (credit: ESA)

<関連情報>

天の川銀河の星からのニュートリノ Neutrinos from stars in the Milky Way

Pablo Martínez-Miravé and Irene Tamborra
Physical Review D  Published: 7 January, 2026
DOI: https://doi.org/10.1103/tw4t-jk8d

Abstract

Neutrinos are produced during stellar evolution by means of thermal and thermonuclear processes. We model the cumulative neutrino flux expected at Earth from all stars in the Milky Way: the Galactic stellar neutrino flux (GS⁢⁢F). We account for the star formation history of our Galaxy and reconstruct the spatial distribution of Galactic stars by means of a random sampling procedure based on Gaia Data Release 2. We use the stellar evolution code mesa to compute the neutrino emission for a suite of stellar models with solar metallicity and zero-age-main-sequence mass between 0.08⁢ and 100⁢, from their premain sequence phase to their final fates. We then reconstruct the evolution of the neutrino spectral energy distribution for each stellar model in our suite. The GS⁢⁢F lies between 🌀(1)  keV and 🌀(10)  MeV, with thermal (thermonuclear) processes responsible for shaping neutrino emission at energies smaller (larger) than 0.1 MeV. Stars with mass larger than 🌀(1⁢), located in the thin disk of the Galaxy, provide the largest contribution to the GS⁢⁢F. Moreover, most of the GS⁢⁢F originates from stars distant from Earth about 5–10 kpc, implying that a large fraction of stellar neutrinos can reach us from the Galactic Center. Solar neutrinos and the diffuse supernova neutrino background have energies comparable to those of the GS⁢⁢F, challenging the detection of the latter. However, directional information of solar neutrino and GS⁢⁢F events, together with the annual modulation of the solar neutrino flux, could facilitate the GS⁢⁢F detection; this will kick off a new era for low-energy neutrino astronomy, also providing a novel probe to discover new physics.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました