昆虫に着想を得た透明セラミック技術(Transparent ceramic could boost internet speeds and cut energy use)

2025-12-12 ペンシルベニア州立大学(Penn State)

Penn State 大学の研究チームは、透明で高い光制御性能を持つ新しいセラミック材料に関する基礎的な物理メカニズムを解明した。この材料は、電圧をかけると光の屈折や伝播を非常に効率的に変えることができ、従来理論では説明できないほど優れた 電気光学特性 を示す。研究では、原子スケールでの微細構造を解析し、従来の大きなドメインではなく、原子数個サイズの極めて小さな偏極領域が高速応答を可能にしていることを発見した。また、量子力学・熱力学・統計力学を統合した 「zentropy 理論」 によって、この挙動を説明する枠組みを構築した。これらの透明セラミックは、単結晶よりも安価に製造でき、通信機器、高速光通信、センサー、先進的フォトニクスデバイスなどでの応用が期待される。将来的にインターネット速度の向上やエネルギー効率の改善に貢献し得る新世代の光電デバイス材料として注目される。

昆虫に着想を得た透明セラミック技術(Transparent ceramic could boost internet speeds and cut energy use)
A new physics theory called zentropy could help explain why recently developed transparent ceramics control light far better than expected, a discovery that could lead to faster, smaller and more energy-efficient optical technologies used in communications, sensing and medical imaging. Credit: Zi-Kui Liu/Phases Research Lab. All Rights Reserved.

<関連情報>

透明強誘電体セラミックスの超高線形電気光学係数を支える動的原子極性構造 Dynamic Atomistic Polar Structure Underpins Ultrahigh Linear Electro-Optic Coefficient in Transparent Ferroelectric Ceramics

Qinghui Jiang,Weigang Zhao,Man Zhang,Jian-Ping Zhou,Mingqing Liao,Andriy Smolyanyuk,Zixuan Wu,Chenglong Jia,Xiaoyong Wei,Cedric Weber,Nadezda V. Tarakina,Isaac Abrahams,Jan M. Tomczak,Zi-Kui Liu,Vladimir Roddatis,and Haixue Yan
Journal of the American Chemical Society  Published: November 4, 2025
DOI:https://doi.org/10.1021/jacs.5c15699

Abstract

Transparent ferroelectrics with high linear electro-optic (EO) coefficients are critical for advanced electro-optical devices. However, achieving optical transparency in ferroelectric ceramics remains challenging due to visible light scattering caused by defects such as domain walls, grain boundaries, and pores. Here, we report the successful fabrication of transparent ferroelectric ceramics through innovative chemical composition design and an advanced two-step sintering process in the La-doped Pb(Mg1/3Nb2/3)O3–PbTiO3 system. The optical transparency, which is near the theoretical upper limit, can be attributed to the wide band gap and the minimization of light scattering of defects. By minimizing porosity and engineering grain/domain sizes to differ significantly from the wavelengths of visible light, we suppress scattering, achieving optical transparency near the theoretical upper limit. Strikingly, these ceramics exhibit an ultrahigh linear EO coefficient of ∼1417 pm/V, over 65 times greater than that of LiNbO3 single crystals, the current industry standard. We attribute this exceptional performance to dynamic atomistic polar structures within switchable, thermally stable domains, which enhance electronic polarization sensitivity. This mechanism is corroborated by dielectric spectroscopy, high-resolution transmission electron microscopy and simulation. Our findings offer insights into the design of cost-effective transparent materials with exceptional EO properties, paving the way for next-generation electro-optical devices.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました