生分解性プラスチックの開発で汚染問題に挑む(Scientists Develop Plastics That Can Break Down, Tackling Pollution)

2025-11-26 ラトガース大学

ラトガース大学(Rutgers University)の研究チームは、自然環境で分解可能な新しいプラスチック材料を開発した。これらのプラスチックは、従来の石油由来プラスチックが数百年残存するのとは対照的に、太陽光や微生物作用によりより短期間で分解されることが特徴。研究では、植物由来の生分解性ポリマーに化学的修飾を施し、分解を促進する“分子仕掛け”を内部に組み込むことで、土壌や海洋環境でも分解が進むことを実証した。また、材料強度や成形性は従来のプラスチックと同等で、包装、フィルム、日用品など幅広い用途が見込まれる。研究者は、この技術が世界的なプラスチック汚染の削減に大きく寄与する可能性を指摘し、産業スケールでの生産と商用化に向けた取り組みを進めている。今回の成果は、持続可能な素材科学および循環型社会の構築に向けた重要な一歩とされる。

生分解性プラスチックの開発で汚染問題に挑む(Scientists Develop Plastics That Can Break Down, Tackling Pollution)
A sample of poly(dicyclopentadiene) plastic, which is a material often used in car bumpers and farm equipment that is difficult to degrade, made with the Rutgers scientists’ process using degradable chemistry. The chemical structure is designed so the plastic starts breaking down on its own within a few days at normal room conditions. On the left is the original sample; on the right is the same sample after 18 hours in the open air.Gu Lab

<関連情報>

隣接基の配座的前組織化はポリマーの自己分解を調節し促進する Conformational preorganization of neighbouring groups modulates and expedites polymer self-deconstruction

Shaozheng Yin,Rui Zhang,Ruihao Zhou,N. Sanjeeva Murthy,Lu Wang & Yuwei Gu
Nature Chemistry  Published:28 November 2025
DOI:https://doi.org/10.1038/s41557-025-02007-3

Abstract

Controlling the rate at which polymers break down is essential for developing sustainable materials. Conventional approaches—which rely on introducing labile and cleavable bonds—often face an inherent trade-off between stability and ease of deconstruction. Inspired by self-deconstruction mechanisms in biomacromolecules, we leverage conformational preorganization of neighbouring groups to modulate and expedite polymer self-deconstruction. Here we show that precise spatial alignment of nucleophilic groups relative to labile bonds regulates the cleavage kinetics by shifting the conformational ensemble towards reactive geometries. This strategy enables programmable deconstruction of both linear polymers and bulk thermosetting networks under ambient conditions, with rates tunable across several orders of magnitude—without altering the chemical identity of the cleavable bond or compromising the polymers’ physical properties. Furthermore, even distal intramolecular functionalities can be harnessed to dynamically control bond cleavability through metal-induced polymer folding, enabling reversible activation and deactivation of self-deconstruction. This work establishes conformational control as a powerful strategy for fine-tuning polymer deconstruction.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました