磁気波を電気信号で測定する新技術(UD researchers uncover a new way to measure magnetic waves using electrical signals)

2025-10-24 デラウェア大学(UD)

デラウェア大学の研究チームは、電子ではなく「磁気スピン波(マグノン)」を情報伝達媒体として利用し、電気信号を発生させる新たな物理原理を発見した。従来、電気信号は電子の移動によってのみ生成されると考えられてきたが、本研究では、マグノンが媒介する磁気波動そのものが電場と相互作用し、電子を伴わずに電流を生じさせることを理論的に証明。さらに、外部電場を用いてマグノンの伝搬方向と強度を制御できることを示した。この成果は、電気と磁気を融合した新しい情報処理アーキテクチャの基盤を提供し、トランジスタを超える超高速・低消費電力コンピューティングの実現につながる可能性がある。研究は米国科学アカデミー紀要(PNAS)に掲載され、NSF支援の材料研究センターCHARMで実施された。

<関連情報>

マグノン誘起電気分極とマグノンのネルンスト効果 Magnon-induced electric polarization and magnon Nernst effects

D. Quang To, Federico Garcia-Gaitan, Yafei Ren, +5 , and Matthew F. Doty
Proceedings of the National Academy of Sciences  Published:October 23, 2025
DOI:https://doi.org/10.1073/pnas.2507255122

Significance

The formalism we develop reveals that the transport of magnons can induce measurable electric polarization, enabling the control and detection of magnon spin and orbital transport through electrical or optical methods. This finding opens exciting opportunities across the fields of magnonics, spintronics, and orbitronics. We further show that magnon orbital transport can influence measurable properties even more significantly than magnon spin currents. Crucially, our framework not only reveals the existence of these phenomena but also provides strategies for designing and engineering materials to enhance conversions between magnons and electric polarization. Collectively, these advances reveal a path toward both a deeper understanding of magnetic materials and transformative advances in both classical and quantum technologies for information processing and storage.

Abstract

Magnons offer a promising path toward energy-efficient information transmission and the development of next-generation classical and quantum computing technologies. However, efficiently exciting, manipulating, and detecting magnons remains a critical need. We show that magnons, despite their charge-neutrality, can induce electric polarization through their spin and orbital moments. This effect is governed by system symmetry, magnon band hybridization, and interactions with other quasiparticles. We calculate the electric polarization induced by magnons in two-dimensional collinear honeycomb and noncollinear antiferromagnets (AFMs), showing that the presence of the Dzyaloshinskii–Moriya interaction yields a finite net electric polarization. In NiPSe3, a collinear honeycomb AFM with Zigzag order, the induced net electric polarization is about three orders of magnitude greater than in MnPS3, a collinear honeycomb AFM with Néel phase. In the noncollinear AFM KFe3(OH)6(SO4)2, the net electric polarization can be tuned via magnon hybridization, which can be controlled by external magnetic fields. These findings reveal that electric fields could be used to both detect and manipulate magnons under certain conditions by leveraging their spin and orbital angular moment. They also suggest that the discovery or engineering of materials with substantial magnon orbital moments could enhance practical uses of magnons for future computing and information transmission applications.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました