望遠鏡のハック技術が宇宙の観測を一新(Telescope hack gives sharper view into universe)

2025-10-22 カリフォルニア大学ロサンゼルス校(UCLA)

UCLA主導の国際研究チームは、光を空間モードごとに分割できるフォトニック・ランタン(photonic lantern)を単一望遠鏡に初搭載し、恒星β小犬座(β CMi)周囲の高速回転円盤をこれまでで最も高解像度で観測した。従来は高解像観測に複数望遠鏡を連結する必要があったが、本手法では光の波面情報を保持したまま再構成し、5倍の精度で色依存の像変化を検出。円盤が非対称構造を持つことを初めて確認した。装置はハワイのすばる望遠鏡に設置され、パリ天文台・ハワイ大学・シドニー大学などが共同開発。大気ゆらぎ補正(適応光学)と新しいデータ処理技術を組み合わせることで、従来の回折限界を超える解像度を実現した。本成果は『Astrophysical Journal Letters』に掲載され、天文学におけるフォトニクス応用の新時代を開くと期待されている。

望遠鏡のハック技術が宇宙の観測を一新(Telescope hack gives sharper view into universe)
Yoo Jung Kim/UCLA
Reconstructed image of the compact, fast-rotating asymmetric disc around β CMi. The white scale bar at the bottom right marks 1 milliarcsecond — equivalent to a 6 feet scale at the distance of the moon.

<関連情報>

フォトニックランタンを用いた回折限界以下の天文測定の天空実証 On-sky Demonstration of Subdiffraction-limited Astronomical Measurement Using a Photonic Lantern

Yoo Jung Kim, Michael P. Fitzgerald, Sébastien Vievard, Jonathan Lin, Yinzi Xin, Miles Lucas, Olivier Guyon, Julien Lozi, Vincent Deo, Elsa Huby,…
The Astrophysical Journal Letters  Published: 2025 October 22
DOI:10.3847/2041-8213/ae0739

Abstract

Resolving fine details of astronomical objects provides critical insights into their underlying physical processes. This drives in part the desire to construct ever-larger telescopes and interferometer arrays and to observe at shorter wavelengths to lower the diffraction limit of angular resolution. Alternatively, one can aim to overcome the diffraction limit by extracting more information from a single telescope’s aperture. A promising way to do this is spatial-mode-based imaging, which projects a focal-plane field onto a set of spatial modes before detection, retaining focal-plane phase information that is crucial at small angular scales but typically lost in intensity imaging. However, the practical implementation of mode-based imaging in astronomy from the ground has been challenged by atmospheric turbulence. Here, we present the first on-sky demonstration of a subdiffraction-limited mode-based measurement, using a photonic-lantern-fed spectrometer installed on the Subaru Coronagraphic Extreme Adaptive Optics instrument at the Subaru Telescope. We introduce a novel calibration strategy that mitigates time-varying wave-front error and misalignment effects, leveraging simultaneously recorded focal-plane images and using a spectral-differential technique that self-calibrates the data. Observing the classical Be star β CMi, we detect spectral-differential spatial signals and reconstruct images of its Hα-emitting disk. We achieve an unprecedented Hα photocenter precision of ∼50 μas in about 10 minutes of observation with a single telescope, measuring the disk’s nearside–farside asymmetry for the first time. This work demonstrates the high precision, efficiency, and practicality of photonic mode-based imaging techniques in recovering subdiffraction-limited information, opening new avenues for high-angular-resolution spectroscopic studies in astronomy.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました