宇宙最大級の構造を調査(Scientists release new survey of the biggest objects in the universe)

2025-10-21 シカゴ大学(UChicago)

シカゴ大学主導の国際研究チームが、ダークエネルギーサーベイ(Dark Energy Survey)の6年間の観測データを用い、宇宙最大級の構造物である銀河団の分布を解析した。銀河団は暗黒物質や暗黒エネルギーの影響を強く受けるため、宇宙の進化法則を検証する重要な「物差し」となる。解析の結果、宇宙の構造形成に関する指標S8の値が、初期宇宙の観測(宇宙マイクロ波背景)と整合的であり、標準宇宙モデルΛCDM(ラムダ・コールドダークマター)と矛盾しないことが確認された。これは、これまでの弱重力レンズ観測で示唆されていた「宇宙が過去により構造的だった」とする見解に反する結果である。研究は、66名・50機関以上が参加し、アルゴンヌ国立研究所やフェルミ研究所も協力。次世代のルービン天文台やローマン宇宙望遠鏡による観測に向け、銀河団を用いた宇宙法則検証の新たな分析手法を提示した。

宇宙最大級の構造を調査(Scientists release new survey of the biggest objects in the universe)
A new study catalogues the universe by mapping huge clusters of galaxies—some of the largest known objects in the universe—offering new insight into how the universe first formed and the rules that govern it today.Image courtesy of the Dark Energy Survey

<関連情報>

ダークエネルギーサーベイ:マルチプローブクラスター宇宙論のモデリング戦略と6年間のデータセット全体の検証 Dark energy survey: Modeling strategy for multiprobe cluster cosmology and validation for the full six-year dataset

Chun-Hao To, Elisabeth Krause, Chihway Chang, Hao-Yi Wu, Risa H. Wechsler, Eduardo Rozo, David H. Weinberg, D. Anbajagane, S. Avila et al. (DES Collaboration)
Physical Review D  Published: 18 September, 2025
DOI: https://doi.org/10.1103/ynqj-6hsb

Abstract

We introduce an updated To&Krause2021 model for joint analyses of cluster abundances and large-scale two-point correlations of weak lensing and galaxy and cluster clustering (termed CL+3×2  pt analysis) and validate that this model meets the systematic accuracy requirements of analyses with the statistical precision of the final Dark Energy Survey (DES) Year 6 (Y6) dataset. The validation program consists of two distinct approaches, (i) identification of modeling and parametrization choices and impact studies using simulated analyses with each possible model misspecification and (ii) end-to-end validation using mock catalogs from customized Cardinal simulations that incorporate realistic galaxy populations and DES-Y6-specific galaxy and cluster selection and photometric redshift modeling, which are the key observational systematics. In combination, these validation tests indicate that the model presented here meets the accuracy requirements of DES-Y6 for CL+3×2  pt based on a large list of tests for known systematics. In addition, we also validate that the model is sufficient for several other data combinations: the CL+GC subset of this data vector (excluding galaxy–galaxy lensing and cosmic shear two-point statistics) and the CL+3×2  pt+BAO+SN (combination of CL+3×2  pt with the previously published Y6 DES baryonic acoustic oscillation and Y5 supernovae data).

 

ダークエネルギーサーベイ3年目の成果:銀河のクラスタリングと弱い重力レンズ効果による宇宙論的制約 Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing

T. M. C. Abbott, M. Aguena, A. Alarcon, S. Allam, O. Alves, A. Amon, F. Andrade-Oliveira, J. Annis, S. Avila et al. (DES Collaboration)
Physical Review D  Published: 13 January, 2022
DOI: https://doi.org/10.1103/PhysRevD.105.023520

Abstract

We present the first cosmology results from large-scale structure using the full 5000  deg2 of imaging data from the Dark Energy Survey (DES) Data Release 1. We perform an analysis of large-scale structure combining three two-point correlation functions (3×2⁢pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions, galaxy–galaxy lensing. To achieve the cosmological precision enabled by these measurements has required updates to nearly every part of the analysis from DES Year 1, including the use of two independent galaxy clustering samples, modeling advances, and several novel improvements in the calibration of gravitational shear and photometric redshift inference. The analysis was performed under strict conditions to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results and tests of the robustness of our results to this decision. We model the data within the flat Λ⁢CDM and ⁢CDM cosmological models, marginalizing over 25 nuisance parameters. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude 8 =0.77⁢6+0.017−0.017 and matter density Ωm =0.33⁢9+0.032−0.031 in Λ⁢CDM, mean with 68% confidence limits; 8 =0.77⁢5+0.026−0.024, Ωm =0.35⁢2+0.035−0.041, and dark energy equation-of-state parameter =−0.9⁢8+0.32−0.20 in ⁢CDM. These constraints correspond to an improvement in signal-to-noise of the DES Year 3 3×2⁢pt data relative to DES Year 1 by a factor of 2.1, about 20% more than expected from the increase in observing area alone. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed =0.13–0.48. We find better agreement between DES 3×2⁢pt and Planck than in DES Y1, despite the significantly improved precision of both. When combining DES 3×2⁢pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find =0.34. Combining all of these datasets with Planck CMB lensing yields joint parameter constraints of 8 =0.81⁢2+0.008−0.008, Ωm =0.30⁢6+0.004−0.005, ℎ =0.68⁢0+0.004−0.003, and ∑<0.13  eV (95% C.L.) in Λ⁢CDM; 8 =0.81⁢2+0.008−0.008, Ωm =0.30⁢2+0.006−0.006, ℎ =0.68⁢7+0.006−0.007, and =−1.03⁢1+0.030−0.027 in ⁢CDM.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました