量子材料の商業化可能性に関する評価研究(Why some quantum materials stall while others scale)

2025-10-15 マサチューセッツ工科大学(MIT)

MITの研究チームは、量子材料の産業化可能性を定量評価するデータ駆動型フレームワークを構築した。量子的性質(“quantum weight”)に加え、コスト、環境負荷、供給安定性などをAIで統合解析し、1万6,000種超のトポロジカル材料を評価。その結果、量子特性が強い材料ほど高コストかつ環境負荷が大きい傾向を発見した。持続可能性と量子機能の両立が高い31種を特定し、産業応用の有望候補として提示。研究は次世代エレクトロニクスやエネルギー変換材料開発の指針を与えるもので、『Materials Today』誌に掲載。

<関連情報>

量子材料は経済的、環境的に持続可能でしょうか? Are quantum materials economically and environmentally sustainable?

Artittaya Boonkird, Mouyang Cheng, Abhijatmedhi Chotrattanapituk, Denisse Córdova Carrizales, Ryotaro Okabe, Nathan C. Drucker, Manasi Mandal, Thanh Nguyen, Jingjie Yeo, Vsevolod Belosevich, Ellan Spero, Christine Ortiz, Qiong Ma, Liang Fu, Tomas Palacios, Farnaz Niroui, Mingda Li
Materials Today  Available online: 7 October 2025
DOI:https://doi.org/10.1016/j.mattod.2025.09.014

Abstract

Quantum materials have revolutionized energy, information, and healthcare technologies, yet their development has largely prioritized performance over economic and environmental impacts—key factors for industrial adoption. Using topological materials as a case study, we present a data-driven framework that evaluates over 16,000 materials based on cost, supply chain resilience, energy demand, toxicity, and environmental footprint. By integrating the recently proposed quantum weight – a metric quantifying quantum behavior – we reveal a striking trend: materials with stronger quantum effects often exhibit higher environmental impact, posing challenges for scalability and industrial adoption. To address this, we identify a small set of materials that achieve a balance between quantum functionality and sustainability. Our approach enables high-throughput, AI-driven materials discovery that incorporates economic and environmental influences from the outset, guiding the development of quantum materials for next-generation microelectronics and energy harvesting technologies.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました