世界初のフルセル二重カチオン電池を開発(World’s first full-cell dual-cation battery developed at University of Limerick)

2025-10-13 アイルランド・リムリック大学(UL)

アイルランド・リムリック大学の研究チームは、世界初となる「フルセル型デュアルカチオン電池」を開発した。この電池はリチウムイオンとナトリウムイオンを組み合わせ、容量と安定性を大幅に向上。ナトリウム主体の電解質にリチウムを加えることでエネルギー密度を倍増させ、1000回以上の充放電を実現した。高価で環境負荷の大きいコバルトを使用せず、持続可能で低コストな次世代バッテリー技術として注目される。成果は『Nano Energy』誌に掲載された。

<関連情報>

高容量、長寿命、デュアルアルカリイオン電池のための相乗的なLi-Na共合金化 Synergistic Li-Na co-alloying for high-capacity, long-life, dual-alkali ion batteries

Syed Abdul Ahad, Christopher Owen, Niraj Nitish Patil, Temilade Esther Adegoke, Clive Downing, Kevin M. Ryan, Shalini Singh, Andrew J. Morris, Hugh Geaney
Nano Energy  Available online 4 September 2025
DOI:https://doi.org/10.1016/j.nanoen.2025.111443

Graphical Abstract

世界初のフルセル二重カチオン電池を開発(World’s first full-cell dual-cation battery developed at University of Limerick)

Highlights

  • Identification of a synergistic Na and Li alloying mechanism in Ge, that delivers a twofold enhancement in capacity (605 mAh g⁻¹) compared to Na only.
  • Mechanistic insight via electrochemical, structural, and computational (AIRSS) analysis, revealing a previously unreported LiNaGe₃ phase.
  • The first dual-ion electrolyte strategy to enhance performance of an alloying-mode anode in a full-cell configuration.
  • Demonstration of a novel and scalable chemical amorphization protocol for alloying anodes, bypassing Li-ion pre-cycling.

Abstract

High-capacity, alloying-mode sodium-ion battery (NIB) anode materials remain elusive, mostly due to poor Na ion diffusivity within attractive candidates such as Ge and Si. Herein, for the first time, increased cation activity is unlocked in a Ge nanowire active material, through the use of a dual ion Li/Na electrolyte. In comparison to low specific capacity (297 mAh g−1) in the Na-only electrolyte, the dual electrolyte enabled a 2x capacity increase (605 mAh g−1) via a dual-cation alloying mechanism which has never been reported before. Electrochemical data and material characterization demonstrates that the mechanism follows an amorphous path, with the formation of amorphous Na-rich and Li-rich Ge phases during electrochemical alloying reactions. Complex stoichiometries of Li-Na-Ge ternary phases were validated using ab-initio random structure searching (AIRSS) computational technique. This dual-cation mechanism led to exceptional specific capacity (80 % capacity retention after 1000 cycles at 1 mA cm−2), with demonstrated full-cell compatibility using a sustainable FeS2 cathode.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました