銀河G34分子雲におけるフィラメント構造の衝突的特徴を発見(Study Uncovers Collisional Signature of Filamentary Structures in Galactic G34 Molecular Cloud)

2025-10-10 中国科学院(CAS)

中国科学院(CAS)の研究チームは、銀河系内のG34分子雲で二つの巨大フィラメント構造(F1・F2)が衝突している証拠を初めて明確に観測した。紫金山天文台13.7m電波望遠鏡のCO分子線データ解析により、フィラメント内部の速度と質量が中心に向かって増加し、重力ポテンシャルエネルギーが運動エネルギーに変換されていることを示した。高密度ガス割合が低く、星形成はまだ初期段階で低質量星が主であり、HⅡ領域も存在しないことから、恒星のフィードバックではなく自己重力が主導する進化過程にあると結論づけた。この成果は、フィラメント衝突が星形成を誘発する重要なメカニズムであることを支持し、銀河における大規模構造進化の理解を深めるものである。

銀河G34分子雲におけるフィラメント構造の衝突的特徴を発見(Study Uncovers Collisional Signature of Filamentary Structures in Galactic G34 Molecular Cloud)G34 molecular cloud. Three-color composite image of WISE 3.4 (blue), 12 (green), and 22 µm(red) bands (background). The white contours represent the integrated intensity of 13CO. The cyan and green circles indicate H II regions. (Image by SUN Mingke)

<関連情報>

分子雲G34内の衝突するフィラメント Colliding filaments in the molecular cloud G34

Mingke Sun, Jarken Esimbek, Christian Henkel, Jianjun Zhou, Gang Wu, Yuxin He, Dalei Li, Xindi Tang, Toktarkhan Komesh, Yingxiu Ma, Kadirya Tursun, Dongdong Zhou, Willem Baan, Andrej M. Sobolev, Qaynar Jandaolet and Serikbek Sailanbek
Astronomy & Astrophysics  Published:19 September 2025
DOI:https://doi.org/10.1051/0004-6361/202553851

Abstract

The molecular cloud complex G34 is located at a distance of 2.12 ± 0.38 kpc and contains two giant filaments, F1 and F2. It is considered a good example of colliding filaments. We mapped these two filaments using the 13CO and 12CO (J = 1−0) lines that were observed with the 13.7 m millimeter-wavelength telescope of the Purple Mountain Observatory. The fraction of high-column density gas NH2 > 1.0 × 1022 cm−2 in F1 and F2 is 4.16% and 8.33%, respectively, which is lower than the typical value of 10% for giant molecular filaments. Moreover, only one of the 13 dense clumps identified in F1 and F2 correlates with the infrared dust cores traced by the NASA Wide-field Infrared Survey Explorer (WISE) 22 μm emission. This suggests that F1 and F2 may be in early stages of their evolution and might be forming low-mass stars. We also observe large-scale velocity gradients in F1 and F2. Along the spine of F1, the velocity and line mass increase from the ends toward the center, while in F2, they increase from the northwest to the southeast. These parameters are inversely correlated with the gravitational potential, which may indicate a transformation between kinetic energy and gravitational potential energy between F1 and F2. Furthermore, no H II regions correlate with F1 and F2 in the WISE data of galactic H II regions, which indicates that the gas distribution within F1, as well as the V-shaped structure of F1, is unaffected by feedback from H II regions, but is instead caused by gravitational effects. The material in F1 and F2 is not concentrated at the ends of the filaments, but rather in the middle of F1 and at one end of F2 and therefore does not lead to the edge-collapse effect. The collapse and merging timescales thus do not compete. Finally, we calculated the merging time of F1 and F2. When the angle between the line-of-sight velocity and the direction of the relative velocity between F1 and F2 is 45°, the average relative velocity between F1 and F2 is 1.39 km s−1. The resulting merging timescale is approximately 4.62 ± 1.12 Myr. This process might be influenced by additional stellar feedback from ongoing star formation within the filaments.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました