AIによる水素燃料生産の最適化と環境影響の低減(Using AI to Optimize Hydrogen Fuel Production and Reduce Environmental Impact)

2025-10-06 ウースター工科大学(WPI)

ウースター工科大学(WPI)のFanglin Che准教授率いる国際研究チームが、AIとプラズマ技術を用いた新しい水素製造法を開発。従来の高温・高コストの触媒法に代え、鉄銅やニッケルモリブデンなどの安価な合金をAI解析で選定し、アンモニア分解により低炭素で水素を生成できることを示した。米エネルギー省支援の研究で、『Nature Chemical Engineering』に掲載。船舶でのオンサイト水素供給など応用が期待される。

<関連情報>

解釈可能な機械学習誘導型プラズマ触媒による水素製造 Interpretable machine learning-guided plasma catalysis for hydrogen production

Saleh Ahmat Ibrahim,Shengyan Meng,Charles Milhans,Magda H. Barecka,Yilang Liu,Qiang Li,Jiaqi Yang,Yabing Sha,Yanhui Yi & Fanglin Che
Nature Chemical Engineering  Published:03 October 2025
DOI:https://doi.org/10.1038/s44286-025-00287-7

AIによる水素燃料生産の最適化と環境影響の低減(Using AI to Optimize Hydrogen Fuel Production and Reduce Environmental Impact)

Abstract

Low-carbon ammonia decomposition via nonthermal plasma is a promising method for on-site hydrogen production, but finding optimal catalysts is challenging. Here we use multiscale simulations to link catalytic activity to nitrogen adsorption energy (EN) and identify the best catalysts for conventional heating and nonthermal plasma: Ru and Co, respectively. With an ideal EN of −0.51 eV for plasma catalysis, we applied machine learning to screen 3,300+ catalysts and designed efficient, earth-abundant alloys such as Fe3Cu, Ni3Mo, Ni7Cu and Fe15Ni. Plasma catalytic experiments at 400 °C further validated that the above alloys achieved higher conversions than the individual metals, and they also have comparable performance to Co. Our techno-economic analysis demonstrated potential economic benefits of plasma catalytic ammonia decomposition over Ni3Mo, highlighting a H2 production cost below the US$1 per kg H2 target and a low carbon footprint of ~0.91 kg of CO2 per kg H2.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました