フローバッテリー向けの自律合成技術を開発(Autonomous Synthesis for Redox Flow Batteries)

2025-09-30 パシフィック・ノースウェスト国立研究所(PNNL)

米国パシフィック・ノースウェスト国立研究所(PNNL)の研究チームは、レドックスフロー電池(RFB)向け新規分子材料の合成と評価を自動化するシステムを開発した。このプラットフォームはロボティクスと機械学習を組み合わせ、分子候補の設計から合成、電気化学的性能評価までを連続して実行可能にする。従来は数週間を要した探索工程を数日に短縮し、より効率的にエネルギー貯蔵用分子を発見できる点が特徴。研究では複数の有機分子がテストされ、安定性や酸化還元特性の自動評価が実証された。今後は大規模な分子ライブラリを対象に迅速なスクリーニングを進め、再生可能エネルギーの長期蓄電に資するレドックスフロー電池の高性能化に繋がると期待される。

フローバッテリー向けの自律合成技術を開発(Autonomous Synthesis for Redox Flow Batteries)
An autonomous loop executes high-throughput synthesis, performs analysis, and proposes the next experiments to accelerate science. (Image by Derek Munson | Pacific Northwest National Laboratory)

<関連情報>

柔軟なバッチベイズ最適化 による レドックスフロー電池の自律有機合成 Autonomous organic synthesis for redox flow batteries via flexible batch Bayesian optimization

Clara Tamura, Heather Job, Henry Chang, Wei Wang, Yangang Liang  and  Shijing Sun
Digital Discovery  Published:01 Sep 2025
DOI:https://doi.org/10.1039/D5DD00017C

Abstract

Traditional trial-and-error methods for materials discovery are inefficient to meet the urgent demands posed by the rapid progression of climate change. This urgency has driven the increasing interest in integrating robotics and machine learning into materials research to accelerate experimental learning. However, idealized decision-making frameworks to achieve maximum sampling efficiency are not always compatible with high-throughput experimental workflows inside a laboratory. For multi-step chemical processes, differences in hardware capacities can complicate the digital framework by introducing constraints on the maximum number of samples in each step of the experiment, hence causing varying batch sizes in variable selection within the same batch. Therefore, designing flexible sampling algorithms is necessary to accommodate the multi-step synthesis with practical constraints unique to each high-throughput workflow. In this work, we designed and employed three strategies on a high-throughput robotic platform to optimize the sulfonation reaction of redox-active molecules used in flow batteries. Our strategies adapt to the multi-step experimental workflow, where their formulation and heating steps are separate, causing varying batch size requirements. By strategically sampling using clustering and mixed-variable batch Bayesian optimization, we were able to iteratively identify optimal conditions that maximize the yields. Our work presents a flexible approach that allows tailoring the machine learning decision-making to suit the practical constraints in individual high-throughput experimental platforms, followed by performing resource-efficient yield optimization using available open-source Python libraries.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました