3Dプリント部品の信頼性向上に向けた設計技術(Technique Makes Complex 3D-Printed Parts More Reliable)

2025-09-25 マサチューセッツ工科大学(MIT)

MITの研究チームは、3Dプリンターの制約を設計段階で考慮できる新しい手法を開発しました。従来のトポロジー最適化は理論上優れた構造を設計できますが、実際のプリントではノズル径や層間の弱結合により性能が再現されず、重量や強度に大きなズレが生じていました。今回の手法は、ノズルサイズやプリント方向、層間結合の弱点を数値モデルに組み込み、実際の出力と一致する設計を可能にします。実験では、従来設計に比べ、軽量かつ高精度で性能の再現性に優れた部品を得られました。航空機翼や医療用インプラントなど複雑な構造体にも応用可能で、今後はセメントやセラミックスへの拡張も期待されています。

<関連情報>

3Dプリント材料構造のトポロジー最適化:設計におけるツールパスの考慮のテスト Topology optimization of 3D-printed material architectures: Testing toolpath consideration in design

Hajin Kim-Tackowiak, Josephine V. Carstensen
Materials & Design  Available online: 12 September 2025
DOI:https://doi.org/10.1016/j.matdes.2025.114700

Graphical abstract

3Dプリント部品の信頼性向上に向けた設計技術(Technique Makes Complex 3D-Printed Parts More Reliable)

Highlights

  • Discrete bead size considerations in design process increases fidelity between design and specimen.
  • Toolpath considerations increases performance fidelity between numerical and experimental design.
  • Lower relative density structures benefit more from toolpath considerations.

Abstract

Topology Optimization (TO) methods applied to the design of material architectures allow for a wider exploration of the possible design space when compared to common geometry parameter controlled design methods. These optimal designs are often realized using Direct Ink Writing methods which exhibit characteristic features of discrete bead sizes and weak bead bonding. The resultant lack of design fidelity and toolpath dependent anisotropy has been found to negatively impact structural performance if not accounted for in the design. This paper addresses both characteristics in the design process of cellular material architectures by expanding upon the Nozzle Constrained Topology Optimization algorithm and experimentally validating the results against a typical baseline. An experimental method of deriving bond region material properties is detailed. A direct toolpath generation method from topology optimized results is proposed. Comparisons are made with conventional topology optimization design methods and performance is measured both experimentally and numerically against theoretical bounds. At relative densities ≤70%, designs with nozzle constraints were able to more closely align numerical and experimental results for both performance and design fidelity (measured by relative density). In contrast, conventional topology optimized designs had higher overall performance, but little alignment between intended design and resultant experimental result. Typical designs consistently overdeposited material and inconsistently predicted performance.

0101機械設計
ad
ad
Follow
ad
タイトルとURLをコピーしました