微小液滴の付着と跳ね返りは速度とサイズに依存(Why tiny droplets stick or bounce: The physics of speed and size)

2025-09-25 バース大学

バース大学とケンブリッジ大学キャヴェンディッシュ研究所の研究により、微小液滴が表面に当たったとき「跳ねるか、付着するか」は液滴の速度とサイズに大きく依存することが明らかになった。従来は撥水性や粘性が主因と考えられていたが、実際には「ゴルディロックス領域」と呼ばれる狭い速度範囲でのみ跳ね返りが可能であり、遅すぎても速すぎても液滴は付着する。また、サイズが小さすぎる液滴は速度に関わらず跳ねられないことも判明した。研究チームは直径30〜50マイクロメートルの液滴を毎秒1〜10メートルで衝突させ、高速度カメラとシミュレーションで挙動を解析。液滴をばねとダンパーに置き換えた単純モデルで複雑な物理を再現した。この知見は、インクジェット印刷の信頼性向上、農薬散布効率化、病原体の飛沫挙動理解など幅広い応用が期待される。

微小液滴の付着と跳ね返りは速度とサイズに依存(Why tiny droplets stick or bounce: The physics of speed and size)
Researchers found that it’s not just the surface or viscosity of droplets that determines their behaviour – they only bounce if they are at the right speed. (Credit: Jamie McLauchlan)

<関連情報>

疎水性表面上で跳ねる微小液滴 Bouncing microdroplets on hydrophobic surfaces

Jamie McLauchlan, Jim S. Walker, Vatsal Sanjay, +3 , and Anton Souslov
Proceedings of the National Academy of Sciences  Published:September 4, 2025
DOI:https://doi.org/10.1073/pnas.2507309122

Significance

Microdroplets play a critical role in understanding disease transmission, industrial processes, and natural phenomena. We focus on microdroplet bouncing, which has been less explored compared to impingement of larger-scale drops. Using experiments and theory, we find a fundamental criterion that predicts whether a microdroplet will stick or bounce off a hydrophobic surface based on its incoming velocity. Our finding presents a fundamental limit to the deposition of fast-moving microdroplets and lays the groundwork for advances in aerosol and microfluidic technologies that leverage these dynamics.

Abstract

Intuitively, slow droplets stick to a surface and faster droplets splash or bounce. However, recent work suggests that on nonwetting surfaces, whether microdroplets stick or bounce depends only on their size and fluid properties, but not on the incoming velocity. Here, we show using theory and experiments that even poorly wetting surfaces have a velocity-dependent criterion for bouncing of aqueous droplets, which is as high as 6 m/s for diameters of 30 to 50 μm on hydrophobic surfaces such as Teflon. We quantify this criterion by analyzing the interplay of dissipation, surface adhesion, and incoming kinetic energy, and describe a wealth of associated phenomena, including air bubbles and satellite droplets. Our results on inertial microdroplets elucidate fundamental processes crucial to aerosol science and technology.

0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました