高質量星形成におけるフラグメンテーションと成長の謎を解明(New Observations Shed Light on Fragmentation Code and Growth Mystery of High-Mass Star Formation)

2025-09-10 中国科学院(CAS)

中国科学院上海天文台、雲南大学、チリ大学などの国際共同研究チームは、アルマ望遠鏡(ALMA)を用いて139個の大質量原始星クラップを観測し、約1600個の高密度コアを検出した。観測結果では、隣接コアの間隔が従来の熱的ジーンズ分裂理論の予測より5倍小さく、重力が支配的な分裂過程であることが示唆された。また、大質量星の形成経路をめぐる「乱流コア降着モデル」と「競争的降着モデル」の対立に関し、17~21太陽質量の星形成活動を示さない巨大コアがわずか2例しか確認されなかった。これは、大質量星が孤立した星無しコアからではなく、多数の低質量コアがガスを奪い合いながら成長する競争的降着モデルを強く支持する証拠とされる。本研究は大質量星形成メカニズムの理解に新たな進展をもたらした。

高質量星形成におけるフラグメンテーションと成長の謎を解明(New Observations Shed Light on Fragmentation Code and Growth Mystery of High-Mass Star Formation)
Detection of molecular lines inside the massive prestellar core. (Image by LIU Tie)

<関連情報>

ALMA-QUARKSサーベイ。III. 塊から中心部への分断と高質量星のない中心部の探索 The ALMA-QUARKS Survey. III. Clump-to-core Fragmentation and Searches for High-mass Starless Cores

Dongting Yang, Hong-Li Liu, Tie Liu, Xunchuan Liu, Fengwei Xu, Sheng-Li Qin, Anandmayee Tej, Guido Garay, Lei Zhu, Xiaofeng Mai,…
The Astrophysical Journal Supplement Series  Published: 2025 September 3
DOI:10.3847/1538-4365/adf847

Abstract

The Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures (QUARKS) survey observed 139 infrared-bright (IR-bright) massive protoclusters at 1.3 mm wavelength with the Atacama Large Millimeter/submillimeter Array (ALMA). This study investigates clump-to-core fragmentation and searches for candidate high-mass starless cores within IR-bright clumps using combined ALMA 12 m (C-2) and Atacama Compact Array 7 m data, providing ∼1″ (∼0.02 pc at 3.7 kpc) resolution and ∼0.6 mJy beam−1 continuum sensitivity (∼0.3 M at 30 K). We identified 1562 compact cores from 1.3 mm continuum emission using getsf. Observed linear core separations (λobs) are significantly less than the thermal Jeans length (λJ), with the λobs/λJ ratios peaking at ∼0.2. This indicates that thermal Jeans fragmentation has taken place within the IR-bright protocluster clumps studied here. The observed low ratio of λobs/λJ ≪ 1 could be the result of evolving core separation or hierarchical fragmentation. Based on associated signatures of star formation (e.g., outflows and ionized gas), we classified cores into three categories: 127 starless, 971 warm, and 464 evolved cores. Two starless cores have masses exceeding 16 M, and represent high-mass candidates. The scarcity of such candidates suggests that competitive accretion-type models could be more applicable than turbulent core accretion-type models in high-mass star formation within these IR-bright protocluster clumps.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました