水を吸って酸素がスイスイ動く?~次世代燃料電池を支える新しいセラミックスの秘密を解明~

2025-08-28 東京科学大学

東京科学大学の八島正知教授らの国際共同研究チームは、新しいセラミック材料 Ba7Nb4MoO20 が水蒸気を吸収すると酸化物イオン(O2–)の移動が速まり、電気伝導度が大幅に向上する仕組みを原子レベルで解明しました。従来は水和によりプロトン伝導が主体と考えられていましたが、実験と分子動力学計算の結果、実際には酸化物イオンの拡散が水和により促進されていることを確認。水和で導入された酸素原子が格子間サイトに入り込み、二量体(Nb/Mo)2O9を形成・消滅する過程でO2–が高速移動することがわかりました。この発見は、燃料電池や水蒸気電解セルなどクリーンエネルギー技術の高効率化に直結し、カーボンニュートラル社会の実現に貢献する重要な成果です。研究成果は「Journal of Materials Chemistry A」に掲載され、HOT Papers に選定されました。

<関連情報>

水和により駆動される準格子間酸化物イオン拡散の促進 Hydration-driven enhancement of interstitialcy oxide-ion diffusion

Yuichi Sakuda,Mudasir A. Yatoo, Bhuvaneshwari Manivannan, Vediyappan Veeramani,Junko Habasaki,Stephen J. Skinner,Hiroshige Matsumoto and Masatomo Yashima
Journal of Materials Chemistry A  Published:18 Jul 2025
DOI:https://doi.org/10.1039/D5TA04728E

水を吸って酸素がスイスイ動く?~次世代燃料電池を支える新しいセラミックスの秘密を解明~

Abstract

The transport properties of oxide ions (O2−) and protons (H+) in ceramic materials are crucial to the development of fuel cells as a clean energy source. There are two main types of oxide-ion diffusion mechanism: the oxygen vacancy mechanism and the interstitialcy diffusion mechanism. Oxide-ion conduction by the oxygen vacancy mechanism is generally suppressed by hydration due to the decreased number of oxygen vacancies. Recently, the oxide-ion conduction via the interstitialcy diffusion mechanism has attracted much attention due to its high ion conductivity in both dry and wet conditions. However, the effect of hydration on the transport properties of the interstitial oxide-ion conductors is not well understood compared to conventional oxygen vacancy conductors. In this study, we demonstrate that hydration enhances both the oxygen conductivity and diffusivity in the interstitial oxide-ion conductor Ba7Nb4MoO20. Using both oxygen and water vapor concentration cells, we accurately determined the transport numbers of protons tH and oxide ions tO, showing that the predominant conducting species is the oxide ion, even in wet atmospheres (e.g., tO = 0.955, tH = 0.045 at 600 °C). The oxide-ion conductivity is higher in wet atmospheres than in dry conditions (e.g., twice as high at 500 °C), due to the higher oxygen diffusion coefficient in wet atmospheres. This is evidenced by measurements of both the tracer and conductivity diffusion coefficients, and by the self-diffusion coefficients from molecular dynamics (MD) simulations using a neural network potential. The MD simulations indicated that the higher oxygen diffusion coefficient in wet atmospheres is due to an increased number of (Nb/Mo)2O9 dimers. This is caused by an increased number of excess interstitial oxide ions resulting from hydration. These findings may open up new avenues in the science and engineering of proton, oxide-ion, and dual-ion conductors.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました